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Abstract

We propose a mechanism design framework that incorporates both soft in-
formation, which can be freely manipulated, and semi-hard information, which
entails a cost for falsification. The framework captures various contexts such as
school choice, public housing, organ transplant and manipulations of classifica-
tion algorithms. We first provide a canonical class of mechanisms for these set-
tings. The key idea is to treat the submission of hard information as an observ-
able and payoff-relevant action and the contractible part of the mechanism as a
mapping from submitted scores to a distribution over decisions (a score-based
decision rule). Each type report triggers a distribution over score submission re-
quests and a distribution over decision rules. We provide conditions under which
score-based mechanisms are without loss of generality. In other words, situations
under which the agent does not make any type reports and decides without a
mediator what score to submit in a score-based decision rule. We proceed to char-
acterize optimal approval mechanisms in the presence of manipulable hard in-
formation. In several leading settings optimal mechanisms are score-based (and
thus do not rely on soft information) and involve costly screening. The solution
methodology we employ is suitable both for concave cost functions and quadratic
costs and is applicable to a wide range of contexts in economics and in computer
science.
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1 Introduction

Scoring Mechanisms Financing decisions, admissions to selective higher education

institutions and allocations of public housing units and of human organs are often

performed via score-based mechanisms. These mechanisms rely on scores or priorities

that measure and aggregate agents’ characteristics into a one-dimensional score or

metric. For instance, in consumer finance, credit scores assess an individual’s credit-

worthiness and determine loan terms. In the financial sector, stress test scores evaluate

the health of financial institutions. Education institutions use standardized test scores

to evaluate student performance, while public school seats are allocated via priorit-

ies based on factors such as proximity to the school or a sibling in the school. In

the medical field, human organ allocations are prioritized based on health status and

treatments.

Oftentimes scores or priorities do not merely reflect agents’ natural or true charac-

teristics due to manipulations. As Frankel and Kartik (2019) point out, this leads

to a distinction between an agent’s natural score–obtained without interfering with

the measuring technology–and the measured score, which may result from gaming,

manipulation, or falsification. In school choice settings, there is ample evidence that

some families submit fake addresses to achieve entry in desirable schools.1 Doctors

put their patients on escalated treatments in order to increase their priority on organ

waiting lists (Bolton, 2018; McMichael, 2022). There is ample evidence of gaming of

classification algorithms as discussed, for example, in Braverman and Garg (2020) and

in the survey of Tang et al. (2023). Manipulations can be costly and the cost depends

on hard information (agents’ natural scores) and soft information (agents’ abilities or

tastes). Manipulations can impact the fairness and efficiency of these systems (see Hu

et al., 2019).

We embark in Section 2 by proposing a unified framework that accommodates both

soft and hard information. Traditionally in mechanism design, types represent soft in-

formation, allowing agents to lie freely. However, when introducing evidence, types

are hard information and the standard assumption is that an agent either has a piece

of evidence so the cost of lying is zero or does not have it in which case the cost of mis-

representation is infinite. By contrast, we allow for richer evidence structures captured

by general falsification costs. We proceed to provide in Section 3 a canonical class of

mechanisms for these settings. The key idea is to treat the submission of hard informa-

tion as an observable and payoff-relevant action and the contractible part of the mech-

anism as a mapping from submitted scores to a distribution over decisions (a score-

based decision rule). Each type report triggers a distribution over score submission

requests and a distribution over score-based decision rules. This allows us to map this

setting with costly misreporting to one captured by the generalized principal-agent

setting in Myerson (1982) and obtain that truthful and obedient direct recommenda-

tion mechanisms (DRMs) are without loss of generality.

1For example, suggestive evidence indicates that parents fake addresses to gain admission to desirable
public schools in Denmark (Bjerre-Nielsen et al., 2023).
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Beyond the revelation principle, in our setting, we obtain two further simplifications

that hold in general. First, DRMs can be decomposed into two mappings: each type

report is mapped to a single score-based decision rule which, in turn, maps publicly sub-

mitted scores to a distribution over decisions and a score recommendation rule (a.k.a.

falsification strategy) that maps a type report to random score recommendations. In

other words, the mechanism does not need to randomize over score recommenda-

tion rules; randomization may be needed for score recommendations only. Second,

because the agent submits scores publicly, obedience constraints are implied by vol-

untary ex-post participation constraints.

While the revelation principle in our setting identifies the language of inputs and

outputs of the mechanism (type reports and score submission recommendations re-

spectively) it does not specify that agents should be recommended to submit their

natural scores. It is possible that optimal mechanisms request agents to submit fals-

ified scores2 Moreover, optimal mechanisms may involve random score submission

recommendations. It is also possible that the same submitted score is assigned to a

different distribution over final decisions depending on the type report that triggered

it. For example, consider an agent whose natural score is their musical talent and soft

information is their privately-known tastes for extracurricular activities. Depending

on the designer’s preferences the mapping from submitted music performance record-

ings to decisions (e.g., level of aid, major etc.) can vary with a student’s type report

and depend on student tastes.3 Such mechanisms rely on a mediator and on reports

from the agent.

In Section 4 we provide conditions under which conditioning the score-based decision

rule on soft information is not needed and thus scoring-based mechanisms (that only

condition on scores) are without loss of generality. In other words, we identify situ-

ations under which the agent does not make any type reports and decides without a

mediator what score to submit in a score-based decision rule. A key condition is that

the original mechanism does not rely on random score submission requests. This is

de facto the case in settings in which the designer wants to ensure that agents sub-

mit their natural scores and restricts attention to falsification-proof mechanisms (see

Perez-Richet and Skreta (2023) for example).

In Section 5 we characterize optimal mechanisms to screen a persuader in the presence

of manipulable hard information. Put differently, we design optimal ordeal mechan-

isms or costly screening mechanisms. We do so using a methodology that is suitable

both for concave cost functions and quadratic costs. In several leading settings the

optimal mechanisms we characterize are implementable via score-based rules and do

not even require commitment to the decision which can be taken by a third party, a

decision maker that is a stand-in for consumers, firms and so forth. This new work

provides a framework and methodologies applicable in a wide range of contexts in

economics and in computer science.

2For an example, optimal tests in the presence of costly falsification leverage, what Perez-Richet and
Skreta (2022) coin productive falsification, to improve the efficiency of decisions.
3See the example in Section 4.1 for an illustrative story.
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1.1 Related literature

Literature on mechanism design with evidence We contribute to the literature on

mechanism design with evidence and in particular to that with moderate misreporting

costs by providing a formulation that allows both for soft and hard information and by

showing how this setting can be casted as a generalized principal-agent setting. Lever-

aging the revelation principle, we show how canonical mechanisms decompose into

two mappings: a score recommendation rule and, a possibly, type-dependent score-based

decision rule. The independent work by Schweighofer-Kodritsch and Strausz (2022)

is in the same spirit but analyzes a setting with 0 or ∞ costs and in which the im-

plementable outcomes do not include the payoff relevant implications of presenting

evidence.

Infinite evidence costs: In the classical formulation of mechanism design settings with

evidence, an agent either has or does not have a piece of evidence (0 or infinity cost)

and evidence is submitted as an input message in the mechanism see Green and

Laffont (1986); Forges and Koessler (2005); Bull and Watson (2007); Deneckere and

Severinov (2008); Ben-Porath and Lipman (2012). Green and Laffont (1986) are the

first to note that the revelation principle fails in the sense that some social choice func-

tions can only be implemented with partial evidence and provide conditions on the

evidence structure, called nested range condition, under which the set of implement-

able social choice functions coincides with the set of truthfully implementable social

choice functions. The subsequent papers Forges and Koessler (2005); Bull and Watson

(2007); Deneckere and Severinov (2008) provide alternative conditions on the evid-

ence structure available to agents (normality) such that presenting maximal evidence

is without loss of generality recovering, in this weaker sense, the revelation principle.

The reasons why truth-telling (in an appropriate sense) fails in settings with evidence,

is simple: it not only matters which type(s) t can mimic (call them T (t)), but also

which types in T (t) can mimic. Normality and the related conditions, guarantee that

if t can mimic t′, t can also mimic any type t′ can mimic.

Moderate evidence costs: Bull (2008a) studies costly evidence production by two agents

in a court setting and analyzes its effect of court outcomes when settlement and non-

settlement are possible. Bull (2008b) allows for moderate linear evidence costs and

shows that the sufficiency of the special three-stage mechanism of Bull and Watson

(2007) holds also with moderate evidence cost. The mechanisms in Bull (2008b) differ

from those in Bull and Watson (2007) in that they allow for a public signal from the

external enforcer. Since transfers can be used to motivate the disclosure of evidence in

the third stage, the second-stage signal can be public. However, transfers do not elim-

inate the need for the second stage because randomization by the external enforcer

may be needed. Kartik and Tercieux (2012) study Nash implementation (as in Maskin,

1999) with evidence and their setting nests costly and hard evidence. By contrast, we

show how mechanism design with evidence, regardless of the cost structure, can be

cast with the original formulation of Myerson (1982).
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Literature on mechanism design with costly misreporting We also contribute to

the literature on mechanism design with costly misreporting (Lacker and Weinberg

(1989); Maggi and Rodriguez-Clare (1995); Crocker and Morgan (1998)) by showing

that indeed the revelation principle in Myerson (1982) applies and by underlining the

parts of the mechanism where randomization is needed. Lacker and Weinberg (1989)

incorporate costly state falsification in a model of risk-sharing contracts and charac-

terize optimal falsification-proof contracts, but also show they may be outperformed

by contracts that induce falsification. Maggi and Rodriguez-Clare (1995), Crocker and

Morgan (1998) derive mechanisms in settings with costly state falsification in single-

agent settings with transfers. In Crocker and Morgan (1998) the contract specifies

transfers and an action to be taken by the agent as a function of his type report x,

denoted by y(x). In some interpretations of their abstract model, the distance |y − x|

affects falsification costs. As is the case in Maggi and Rodriguez-Clare (1995), the

optimal contract in Crocker and Morgan (1998) relies on distortions on x. Severinov

and Tam (2019) focus on a mechanisms with transfers and provide conditions on re-

porting costs to ensure truth-telling is without loss. Deneckere and Severinov (2022)

show that in environments with misrepresentation costs having agents send multiple

signals, significantly expands the set of implementable outcomes and results to near

efficiency when misrepresentation costs are small. Tan (2023) considers a price dis-

crimination setting in which agents engage in costly behavior distortions to avoid be-

ing discriminated. By contrast, there are no transfers in Perez-Richet and Skreta (2022)

who derive optimal tests in an agent-decision maker setting (a.k.a sender-receiver set-

ting) in which the agent can falsify at a cost inputs into the test. Finally, there is also a

computer science literature on mechanism design with reporting costs, most notably

(Kephart and Conitzer, 2016) who provide conditions on reporting costs to ensure

truth-telling is without loss.

Literature on costly signaling and screening. We also relate to the vast literature

stemming from Spence (1978)’s classic signaling model and the recent literature that

studies costly gaming distortions in signaling settings stemming from the important

contribution of Frankel and Kartik (2019). These works include Ball (2022) and Frankel

and Kartik (2021). We differ in that we consider general mechanisms (rather than lin-

ear scoring rules). Our characterization of optimal approval mechanisms in settings

without transfers relates to the literature on costly screening via various tools: not-

ably money burning as studied, among others, in Hartline and Roughgarden (2008),

Condorelli (2012), Chakravarty and Kaplan (2013). In those settings the utility burnt

does not depend on the agent’s type whereas in our setting falsification costs are type-

dependent. Dworczak (2022) studies costly ordeals in a specialized setting with lin-

ear costs and allowing for deterministic mechanisms. In Dworczak (2022) the cost

to achieve ordeal y is linear in type. The allocation is an amount of money x ∈ R

whereas we have an approval probability that must be in [0, 1]. This is not a crucial

difference. In Dworczak (2022) and in most papers studying ordeals (costly screening

mechanisms) the cost to achieve a given level of benefit is increasing in type. In our
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setting, each type has a different ordeal level that costs zero (this is the ordeal level

that corresponds to presenting the natural score). The optimal mechanisms we design

simultaneously specify how each submitted score is mapped to an approval probab-

ility and a (random) score submission recommendation rule as a function of reported

types. By contrast to these earlier works, the mechanisms we allow for can depend

jointly on the ordeal and the type performing the given ordeal. This feature can be im-

portant for applications where the designer wants the allocation to depend jointly on

the task and the type of agents because certain types have higher weight on designer’s

objective function.4

Our characterization of optimal approval mechanisms in settings without transfers

also relates to Li and Qiu (2023) who study costly screening in a multi-agent set-

ting without transfers and identify conditions under which contests are optimal and

situations under which random mechanisms dominate contests. We differ in the cost

structures we examine and the objective function.5

Literature on persuasion mechanisms with evidence Glazer and Rubinstein (2004,

2006) study settings in which the sender seeks to persuade the receiver to ‘accept’

them regardless of the state of world whereas whether the receiver prefers to accept

or to reject depends on the state of the world. The sender knows the state of the world

and can present the receiver hard evidence about it. They derive optimal persuasion

rules. These rules maximize the probability that the listener accepts the request if and

only if it is justified. In Glazer and Rubinstein (2006) the authors show that neither

commitment to the decision nor randomizations have any value. In Glazer and Ru-

binstein (2004) the sender can, in addition, send an arbitrary (cheap talk) message to

the receiver and upon receiving the message the receiver can request hard evidence.

Like in our example in Section 4.1, it is often beneficial for the receiver to randomise

in the evidence she asks for from the sender. However, by contrast to our example in

Section 4.1, in Glazer and Rubinstein (2004) it is not beneficial to randomise the final

decision of accepting or rejecting once the evidence has been provided. Sher (2011)

provides generalizations to the aforementioned results and identifies the key condi-

tions on payoffs (namely, concavity) that renders commitment to have no value. Hart,

Kremer, and Perry (2017) focus on truth-leaning equilibrium and identify the structure

of evidence that guarantees that commitment cannot yield any advantage.6

4Akbarpour et al. (2023) analyze how to rank various costly screening tools. By contrast, we study given
exogenously given falsification costs, how to optimally screen agents.
5As discussed in Li and Qiu (2023), mechanism design in the presence of costly manipulations, relates
to works in computer science that study strategic classification. See, for instance, Hardt et al. (2016) who
present an efficient classification algorithm that minimizes errors in the presence of gaming.
6Committing to a mechanism also has no value in the allocation setting without transfers considered by
Ben-Porath et al. (2019).
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2 Model

We consider an uninformed principal facing a privately-informed agent.7 The agent’s

type, denoted as t = (θ, s) ∈ T, consists of two components. First, θ ∈ Θ represents the

agent’s preferences, abilities, and needs, which is soft information and can be misrep-

resented without cost. Second, s ∈ S stands for the agent’s natural score or evidence,

such as a transcript or a certificate of disability, which is costly to falsify. There is a

commonly-known prior over T, denoted by F ∈ ∆(T). The falsification cost function

c : A × T → R+ defines the cost for a type t = (θ, s) to present a score a ∈ A, with

A ⊆ S. We assume that presenting the true score is costless, i.e., c(s, t) = 0; ∀t = (θ, s).

It is important to note that the cost of a depends not only on the natural score s but

also on θ, capturing aspects like gaming ability or discomfort from lying.

We denote by X the set outcomes or decisions. An outcome x can stand for quality-

transfer pairs as in Mussa and Rosen (1978), levels of aid, bonuses, promotions and so

forth. The agent’s payoff is a function u : X × A × T → R, defined as

u(x, a, t) = v(x, t)− c(a, t).

Let R denote the set of functions ρ : T → ∆(A). In what follows, ρ stands for the

agent’s falsification strategy. The designer’s payoff is a function u : X × A × T × R →

R. Note that the designer’s payoff does not only depend on the joint distribution of

decisions and types (that is X × T), rather it depends on the joint distribution over

decisions, types, scores submitted as well as the agent’s falsification strategy. It can be

of the form

uP(x, a, t, ρ) = vP(x, t, a)− cP(ρ, t),

capturing that the designer may internalize the agent’s burnt utility caused from falsi-

fication. All the sets T, A, S, Θ are finite.

3 Canonical mechanisms

In this section we show how to cast our setting to a generalized principal-agent setting

in Myerson (1982) and describe the canonical class of mechanisms.

To do so, we treat a score submission both as a type report and as a payoff-relevant

action. An agent submits a type report which contains an informal report about their

natural score, which is costless no matter the score they claim to have, and a formal

submission of a score, which can be costly if they falsify their natural score. The formal

score submission is payoff-relevant and analogous to an action in Myerson (1982). The

revelation principle in Myerson (1982) establishes that any outcome, in other words,

any joint distribution on X × A × T, arising at a BNE of any abstract mechanism,

arises at a truthful and obedient equilibrium of a direct recommendation mechanism:

7We can straightforwardly extend the setting to accommodate multiple agents at the expense of more
cumbersome notation.
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A DRM maps type reports to a distribution over contractible outcomes (denoted by

D0 in Myerson, 1982) and action recommendations, one for each player.

The formal submission of a score a ∈ A corresponds to choosing an action in Myerson

(1982). The contractible outcomes in our setting, denoted by D, are functions from

observable score submissions (actions) to distributions over decisions:

D = {q : A → ∆(X)}.

With our notation direct recommendation mechanisms are defined as follows:

µ : T
︸︷︷︸

Θ×S

→ ∆(D × A) ⇐⇒ µ : T
︸︷︷︸

Θ×S

→ ∆
(

∆(X)A × A
)

.

Observe that each type report t triggers a distribution over score requests (a ∈ A) and

a distribution over score-based decision rules (q ∈ D). The mechanism then determ-

ines the ultimate joint distribution over types, decisions and submitted scores which

matter because they are payoff relevant. Observe also that the mechanism may request

falsified scores.

To summarize, in this formulation the agent reports a type t = (θ, s) and presents evid-

ence a. A piece of evidence or score is submitted twice: first, informally via a costless

message as part of the type report and second, as a formal submission which can be

costly and amounts to choosing a payoff-relevant action in Myerson (1982). There are

several real-world situations that resemble this procedure. In a job application setting,

the costless message is to state a university degree on a CV and the formal submis-

sion is to show the certificate. In a disaster relief application, the costless message is

the claim there was flood damage and the costly action is to produce evidence of the

damage. Similarly, in a school choice setting the costless message amounts to stating

the address in the form and the costly action amounts to producing evidence of this

address (a utility bill, lease or ownership contract).

As part of the type report, the agent can freely lie about the score but the formal sub-

mission can be costly when the natural score is falsified.

Proposition 1 (Revelation principle) (Myerson, 1982) Any BNE equilibrium feasible joint

distribution on T × X × S arising at a BNE of any abstract mechanism, arises at a truthfull

and obedient equilibrium of a direct recommendation mechanism.

Sketch of proof As a reminder, to obtain the result we start with some indirect mechan-

ism π : R → ∆(D ×M) where R (M) stand for abstract input (output) messages.

The agent employs a reporting rule σ : T → ∆(R) and chooses an action a ∈ A as a

function of message m ∈ M received using action rule δ : M → ∆(A). The agent’s

strategy consists of the reporting and the action rule which together with the indirect

mechanism π determine the outcome which is a joint distribution over X × T × A. Al-

ternatively, the mechanism π and the agent’s reporting and action rule can be thought

9



of as transition probabilities8

σ : T → R; π : R → D ×M; δ : M → A

and the corresponding DRM is a transition probability built from composing π, σ, δ as

follows:

µ = σ ◦ π ◦ δ : T → D × A.

It is straightforward to argue that if (σ, δ) are part of a Bayes-Nash equilibrium given

the indirect mechanism π, truth-telling and obedience are optimal for the agent given

the DRM µ. Mechanism µ by construction results to the same joint distribution over

X × T × A and to the same transition probability ρ : T → A as π, σ, δ do.

Thus the proof of Myerson (1982) straightforwardly extends to the proposed setting.

The fact that the designer’s payoff can depend on the ρ : T → ∆(A) is immaterial for

the argument.

Incentive-compatible DRMs Incentive compatibility constraints split into truth-telling

and obedience constraints:

∑
q∈D

∑
a∈A

µ(q, a | t)

[

∑
x∈X

q(x|a)v(x, t)− c(a, t)

]

≥ ∑
q∈D

∑
a∈A

µ(q, a | t′)

[

∑
x∈X

q(x|a)v(x, t)− c(a, t)

]

∀ t, t′ ∈ T

(TT)

∑
q∈D

µ(q, a | t)

[

∑
x∈X

q(x|a)v(x, t)− c(a, t)

]

≥ ∑
q∈D

µ(q, a | t)

[

∑
x∈X

q(x|a′)v(x, t)− c(a′, t)

]

∀ t ∈ T; a ∈ supp µ(·|t), a′ ∈ A.

(OB)

If the agent’s participation in the mechanism is voluntary then the mechanism must

also satisfy participation constraints:

∑
q∈D

µ(q, a | t)

[

∑
x∈X

q(x|a)v(x, t) − c(a, t)

]

≥ u(t) ∀ t ∈ T, a ∈ supp µ(·|t) (PC)

where u(t) denotes the agent’s payoff from non-participation. For future reference we

also let:

U(t, t′, µ) ≡ ∑
q∈D

∑
a∈A

µ(q, a | t′)

[

∑
x∈X

q(x|a)v(x, t) − c(a, t)

]

. (1)

Earlier works on mechanism design settings with costly misrepresentation of types

e.g. (Kephart and Conitzer, 2016; Severinov and Tam, 2019) treated the score submis-

sion analogous to a type report and identified conditions under which submitting the

natural score is without loss of generality. With this more traditional view, the revela-

tion principle (which is often used as a synonym with truth-telling) could fail. Indeed,

8When we refer to a mapping as transition probability from one set to another we remove the ∆.
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as discussed in the introduction, in settings without monetary transfers such as the

ones considered in Perez-Richet and Skreta (2022) restricting attention to mechanisms

that incentivize the agent to submit the natural score are with loss of optimality. This

is true even for falsification cost functions that satisfy the triangular inequality con-

sidered in Kephart and Conitzer (2016) among others. Instead, here by treating the

score submission as a payoff-relevant action we recover the generalized revelation

principle by Myerson (1982). However, now, while the agent is reporting truthfully,

the score submission request rule may ask the agent to falsify and it is not easy to

identify a priori the optimal falsification targets for each type. We proceed to obtain

further simplifications that we later leverage to solve for optimal mechanisms.

Lemma 1 (Wlog deterministic mechanisms over score-based decision rules) Within our

formulation, there is no need to randomize over score-based decision rules: each type report

triggers a single q ∈ D.

The intuition behind Lemma 1 is simple: Given that a score-based decision rule q :

A → ∆(X), specifies a randomization over x’s we do not need randomization over q’s:

Conditional on a type report t the mechanism specifies a unique score-based decision

rule but possibly to random score submission requests.

Mechanism decomposition In light of Lemma 1 mechanisms simplify from µ : T →

∆(D × A) to µ : T → D × ∆(A) and, more importantly, a mechanism µ decomposes

into two mappings: A score-based decision rule:

qµ : A × T → ∆(X)

defined from µ as follows q(x|a, t) ≡ q(x|a)1µ(·|t)=δq
, and a score recommendation rule:

ρ : T → ∆(A).

The mapping ρ plays the role of the agent’s falsification strategy and maps a type

report to random score submission requests.

Voluntary participation To formally accommodate the agent’s participation decision

we add additional actions in A. In what follows, we abuse notation and take A to con-

tain the scores that the agent submits and, in addition, the decisions to participate or

not to participate.

In our setting, score submission is observable and hence, the mechanism can assign the

null outcome or non-participation outcome (call it x), if the agent inputs a score a′ in q

instead of the score a requested by µ. With this observation, the obedience constraints

boil down to ex-post participation constraints. Here ex-post means conditional on a

score submission recommendation rather than when we sum all recommendation on

the support of ρ. We summarize this observation in the following lemma:

11



Lemma 2 (Obedience implied by voluntary participation ) Let x denote the non-participation

outcome and let u(t) denote the corresponding payoff of type t. Within our formulation, obed-

ience constraints reduce to participation constraints.

Note that in the presence of a non-participation null outcome, the agent has to obey

score submission requests that he is potentially not indifferent among.

Simplified mechanisms From the above, it follows that it is without loss to focus

on direct recommendation mechanisms with allocation rule qµ : A × T → ∆(X) and

score recommendation rule ρ : T → ∆(A) that satisfy obedience:

Eqµ(a,t)v(x, t)− c(a, t) ≥ 0, ∀a ∈ supp ρ(t)

and truth-telling:

U(t) ≡ Eρ(t)

(

Eqµ(a,t)v(x, t)− c(a, t)
)

≥ Eρ(t′)

{

Eqµ(a,t′)v(x, t)− c(a, t)
}+

, ∀t, t′.

4 Score-based mechanisms

A score-based mechanism is an allocation rule based only on (final) score a, q : A →

∆(X). A falsification strategy σ : T → ∆(A) is incentive compatible if

Eq(a)v(x, t)− c(a, t) ≥ Eq(a′)v(x, t)− c(a′, t), ∀a ∈ supp σ(t), a′ ∈ A.

We proceed to provide sufficient conditions for a score-based mechanism to be without

loss of generality.

Assumption 1 (Separability assumptions) Suppose the agent’s preferences can be written

as

uA(x, a, t) = β(a, t)v(x) − c(a, t)

with β(a, t) > 0 and the principal’s preferences are:

uP(x, a, t) = w(a, t)r(x, a) + y(a, t)v(x) + ℓ(a, t)

with w(a, t) > 0.

Note that the assumptions are automatically satisfied if |X| = 2 by normalization.

Proposition 2 (Score-based principle) If preferences satisfy the separability assumptions

and (qµ, ρ) is an incentive compatible direct mechanism with a deterministic score recom-

mendation rule, then there exists a score-based mechanism q with an incentive compatible and

falsification strategy σ such that maintains the agent’s payoff and weakly increases the prin-

cipal’s payoff.
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The result in Proposition 2 is analogous to the taxation principle whereby instead of

submitting a report in a mechanism, the agent chooses an option from a menu. Here

the agent only decides what score to submit in a fixed score-based decision rule,

q̄ : A → ∆(X). Instead in a mechanism, the allocation rule can depend on the agent’s

type as well, so qµ : A × T → ∆(X). In other words, in a mechanism two different

types t and t′ can be submitting the same score but face different distributions over

decisions. When the mechanism relies on a deterministic score recommendation rule,

incentive-compatibility implies that types t and t′ are indifferent between each oth-

ers distributions over decisions. The designer separability condition is necessary for

the designer to always prefer one stochastic allocation for both types whenever two

agent types submitting the same score are indifferent across two distributions over

decisions. Principal separability is required because a stochastic allocation is multidi-

mensional unlike a transfer (and if |X| = 2, no condition on the designer’s payoffs is

required). Agent separability plays an analogous role as the standard quasilinearity

assumption.

Implications Suppose that the designer wants to restrict attention to falsification-

proof mechanisms as is done in Perez-Richet and Skreta (2023)9 then Proposition 2

implies that restricting attention to score-based mechanisms is without loss of gener-

ality.

Definition 1 (Falsification proof mechanisms) An IC mechanism is falsification proof if

it is a best response for all types t = (θ, s) ∈ T submit their true natural score, that is a = s.

Corollary 1 In a multi-outcome generalized persuasion setting any IC falsification proof mech-

anism can be replicated by a scoring mechanism. Thus, the mapping from submitted scores to

decisions cannot depend on soft dimensions of types.

Remark 1 (Comparison: tests versus score-based decision rules versus mechanisms)

To understand the differences between general mechanisms versus score-based mechanisms

considered in Perez-Richet and Skreta (2023) (which as stated in Corollary 1 are without loss

in that setting) versus tests considered in Perez-Richet and Skreta (2022) we now compare

them in our setting.

Test & falsification: Faced with a test τ : A → ∆(M) the agent chooses a falsification strategy

that maps a natural score to a falsified score. The test converts the possibly falsified score to a

signal m ∈ M. There is a third party, a decision maker, who upon observing the signal m,

makes a decision X.

Score-based mechanism & falsification: Now there is a score-based mechanism q : A → ∆(X).

Faced with such a mechanism the agent chooses a falsification strategy that maps a natural

score to a falsified score. The mechanism maps a submitted score to a decision. There is com-

mitment to the decision and no separate decision-maker.

9Falsification-proof mechanisms do not burden agents and avoid negative externalities. In the words of
Pathak and Sönmez (2008), falsification-proof mechanisms level the playing field.
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General mechanisms A general mechanism is

q : T × A → ∆(X) and ρ : T → ∆(A)

The agent submits a type report and the mechanism maps the report to a score-based decision

rule and a score submission request. The revelation principle tells us that truth-telling and

obedience are without loss. The difference between score based and general mechanisms is that

in general q can vary with soft dimensions of type in contrast to score-based mechanisms. ⋄

We illustrate these differences in a simple example in what follows.

4.1 Illustrative example: college admission

The designer is a college facing a student with four equally likely types:

T = {(F, sL), (NF, sL), (F, sH), (NF, sH)}.

The first element of each type describes whether or not the student likes football (F

or NF) whereas the second element is the natural score which can be low (sL) or high

(sH). The decision is binary, so X = {0, 1}, where 0 stands for not admit while 1

stands for admit. The cost to falsify to sj 6= si is 1 for all types. The payoffs from each

decision as a function of the agent’s type are summarized in the table below where the

first number is the agent’s payoff whereas the second number is the designer’s payoff:

1 0

t1 = (F, sL) 1, 3 0, 0

t2 = (NF, sL) 1,−1 0, 0

t3 = (NF, sH) 1, 2 0, 0

t4 = (F, sH) 1, 4 0, 0

Table 1: Student and college payoffs

Scenario 1: Suppose that the designer’s payoff depends only on the admission de-

cision. The designer’s (here, the college’s) first-best is to admit everyone except t2.

This can be achieved by faces the following test:

q(sL) = 0, q(sH) = 1

t2, t3, t4 do not falsify; t1 falsifies sL to sH and thus gets admitted but burns all utility

because the cost of falsification is 1. Scenario 2: In this scenario, the designer’s payoff

depends on the decision and the incurred falsification costs. In particular, the loss

function is quadratic incurred costs c L(c) = c2

6 . Table 1 lists the payoffs corresponding

to each decision. To get the total payoff for the designer we subtract the loss due to
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falsification cost. Consider the following menu of score-based decision rules:

pooling at 0: q0(sL) = q0(sH) = 0

pooling at 1: q1(sL) = q1(sH) = 1

separating: qS(sL) = 0, qS(sH) = 1

partially separating: qPS(sL) =
1

4
, qPS(sH) = 1.

The optimal assignment to a score-based decision rule of each type is as follows:

α(q1|t1) = 1

α(qPS|t2) = 1

α(qS|t3) = 1

α(qS|t4) = 1.

Finally, the optimal score submission request rule is:

ρ(sL|t1) =
1

4
, ρ(sH |t1) =

3

4

ρ(sL|t2) = 1, ρ(sH |t2) = 0

ρ(sL|t3) = 0, ρ(sH |t3) = 1

ρ(sL|t4) = 0, ρ(sH |t4) = 1.

Note that this mechanism satisfies truth-telling and obedience. Types t1, t2 get 1
4 if they

mimic each other and get zero if they mimic t3 or t4. Types t3, t4 get their maximum

payoffs by reporting the truth. Whereas in Scenario 1 the optimum can be achieved by

a test that entails no communication nor commitment on the decisions; in scenario 2

the optimum needs communication and commitment: it is a mechanism and not a test.

In scenario 2, the designer’s optimal mechanism requests scores stochastically and differ-

ent type reports lead to different score-based rule. By contrast to the findings in Glazer

and Rubinstein (2004), Sher (2011) and Hart et al. (2017) Ben-Porath et al. (2019) we

have a pure persuasion setting with binary actions in which (i) commitment is valu-

able, (ii) communication is valuable, (iii) randomization in evidence requests is valu-

able and (iv) randomization in decisions is valuable. The difference with the earlier

papers lies in that we consider general mechanisms that allow for randomizations and

in that information in our setting is semi-hard and thus falsification is payoff-relevant.

This example shows that scoring mechanisms (which, by contrast to tests encode com-

mitment to the decision) can be dominated by a mechanism that receives type reports

from the agent and outputs random score submission recommendations.
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5 Optimally screening a persuader: binary outcomes

In this section we derive optimal mechanisms for the designer in a binary outcome

setting in which X = {0, 1} and agent types equal natural scores T = [t, t], with t <

0 < t so t = s and there are no soft dimensions of the type. The distribution of types F

has full support and strictly positive density f . To fix ideas, we call decision 1 approval

and decision 0 rejection. Regardless of type, the agent is a persuader who wants to be

approved, so prefers x = 1 to 0, whereas the designer wants to approve only positive

types. There are no transfers. This binary outcome setting captures many leading

settings such as allocation of a good to an agent with unit demand without transfers

(the agent either gets a unit or not); acceptance decisions, approvals, promotions and

many other settings. As discussed in the introduction, analogous settings have been

analyzed in Glazer and Rubinstein (2004), Sher (2011) and Perez-Richet and Skreta

(2023). Li and Qiu (2023) study a richer allocation problem with many goods and

agents under linear signaling costs.10

The agent, regardless of type, gets a payoff of 1 if approved and 0 otherwise, that is

for all t ∈ T:

u(x, a, t) = v(x, t)− c(a, t) =







1 − c(a, t) if x = 1

−c(a, t) if x = 0
.

The designer’s outside option from rejecting the agent is 0. The designer’s payoff from

accepting an agent of type t is equal to t, therefore the first-best is to accept positive

types and to reject negative ones. There are no resource constraints. The cost function

is scaled by γ > 0 which stands for the agent’s gaming ability assumed to be known,

so c : T × A → R and 1
γ c(a, t) denotes the cost to type t of submitting score a. Types

are distributed according to a commonly-known full support distribution F. We focus

on the case that EF[t] < 0. We assume that no falsification is costless so when a = t,
1
γ c(a, t) = 0 (which is just a normalization) and that for all a ≥ t the cost is decreasing

in t.

For this binary outcome setting, the allocation rule simplifies to an approval probabil-

ity as a function of a type report t and a submitted score a:

q(a, t) ∈ [0, 1].

The mechanism, therefore, consists of an allocation rule that depends both on the

agent’s type t and submitted score a, q : A × T → [0, 1] and score recommendation

rule ρ : T → ∆(A).

The interim approval probability is the expectation over all recommended scores:

Q(t) =
∫

A
q(a, t)dρ(a, t). (2)

10Under certain conditions, their findings relating to whether or not contests are dominated by mechan-
isms that involve randomness go through under convex costs as they explore in their appendix.
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The agent’s payoff simplifies to U(t) = Q(t) −
∫

a∈A
1
γ c(a, t)dρ(a|t) and the ex-post

participation constraints (which, as mentioned earlier, imply obedience) and truth-

telling constraints write:

q(a, t)−
1

γ
c(a, t) ≥ 0 ∀a ∈ supp ρ(·|t) (PC)

U(t) ≥
∫

a∈A

[

q(a, t′)−
1

γ
c(a, t)

]

dρ(a|t′) = Q(t′)−
∫

a∈A

1

γ
c(a, t)dρ(a|t′) ∀t, t′ ∈ T.

(TT)

Designer’s objective The designer seeks the mechanism that solves

max
q,ρ

∫ t

t
Q(t)t f (t)dt

subject to TT, PC, probability constraints.

In what follows, when a score recommendation rule ρ is deterministic for each t (a

Dirac on some a) we denote it simply as a∗ : T → A.

First best The first-best for the designer is:

QFB(t) =







0 for t < 0

1 for t ≥ 0.
(3)

If 1 − 1
γ c(t, 0) < 0, so γ < c(t, 0) we can achieve the first best by setting

a∗(t) =







t for t ∈ [t⋆, t]

t⋆ for t ∈ [0, t⋆)

t for t < 0

q(a, t) =







1 for a ≥ t⋆

0 for a 6= t⋆

where t⋆ satisfies 1 − 1
γ c(t⋆, 0) = 0. In words, t⋆ is the highest score type 0 is willing to

falsify to in order to get approved with probability 1. All positive types get approved

with probability 1. Positive types up to t⋆ falsify to t⋆ while all positive types above t⋆

do not falsify. All negatives get approved with probability 0 and do not falsify.11

In what follows, we solve for the optimal mechanism when 1 − 1
γ c(t, 0) ≥ 0 so

γ > c(t, 0) (4)

holds and therefore falsification costs are low enough to make the first-best impossible.

Lemma 3 Without loss of optimality we can restrict attention to q : A × T → [0, 1] increas-

ing in a for all t.

11The definition of t⋆ and the fact that c is decreasing in t imply together that 1 − 1
γ c(t⋆, t) < 0 for t < 0.
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5.1 Concave costs

Suppose that for each a ∈ A, with a ≥ t, c(·, t) is decreasing and concave in t. Recall

that in this section, t ∈ T = [t, t] ⊂ R.

Implications of incentive compatibility The agent’s payoff from truth-telling writes:

U(t) = max
t′∈T

(

Q(t′)−
∫

a∈A

1

γ
c(a, t)dρ(a|t′)

)

and when c is concave it is convex as it is the maximum of convex functions. Let

C(t) ≡ −
∫

a∈A

∂ 1
γ c(a, t)

∂t
dρ(a|t). (5)

Note that if Q can take any value in R then it is analogous to a transfer making our

problem similar to a mechanism design problem with quasilinear payoffs. Lemma 4

that follows is standard.

Lemma 4 A mechanism q, ρ satisfies truth-telling ⇐⇒

1. C(t) is increasing

2. C(t) belongs to the subgradient of U

3. U(t) = U(t) +
∫ t

t C(z)dz = U(t)−
∫ t

t C(z)dz.

In our setting, however, Q can only take values in [0, 1]. We proceed to build and solve

a relaxed problem and in the process ensure that the Q is in the correct range namely

in [0, 1]. Combining (2) and the equality in item 3 above we can express Q as follows:

Q(t) = U(t) +
∫

a∈A

1

γ
c(a, t)dρ(a|t) = U(t) +

∫ t

t
C(z)dz +

∫

a∈A

1

γ
c(a, t)dρ(a|t)

= U(t)−
∫ t

t

[
∫

a∈A

∂ 1
γ c(a, z)

∂z
dρ(a|z)

]

dz +
∫

a∈A

1

γ
c(a, t)dρ(a|t). (6)

Recall that in the case we are analyzing EF[t] < 0. Let t0 be such that
∫ t

t0
zdF(z) = 0, so

t0 is the type above which the conditional expectation of the agent’s type is equal to 0.

The designer wants to minimize the approval probability for negative types. Because

Q(t) is increasing in U(t) and in falsification costs, at an optimum there is a boundary

type t∗ ≥ t0
12 such that (i) U(t) = 0 for all t ∈ [t, t∗] (ii) ρ(a|t) = δt for all t ∈ [t, t∗];

no falsification for these low types sets falsification cost to zero and ensures Q(t) = 0.

With these observations (6) writes:

12We explain why the boundary type must be above t0 below.
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Q(t) = −
∫ t

t∗

[
∫

a∈A

∂ 1
γ c(a, z)

∂z
dρ(a|z)

]

dz +
∫

a∈A

1

γ
c(a, t)dρ(a|t). (7)

We employ (7) and standard arguments to rewrite the designer’s objective of the re-

duced problem as follows:

∫ t

t∗
Q(t)t f (t)dt =

∫ t

t∗

∫

a∈A

(

1

γ
c(a, t)t −

∂ 1
γ c(a, t)

∂t
EF[z|z ≥ t]

(1 − F(t))

f (t)

)

dρ(a|t) f (t)dt

and the principal’s problem becomes:

max
q,ρ

∫ t

t∗

∫

a∈A

(

1

γ
c(a, t)t −

∂ 1
γ c(a, t)

∂t
EF[z|z ≥ t]

(1 − F(t))

f (t)

)

dρ(a|t) f (t)dt

subject to C increasing and Q ∈ [0, 1]

where C is defined in (5).

Relaxed problem As usual, we solve the relaxed problem ignoring the monotonicity

constraint on C which is required for truth-telling. The designer’s objective is linear in

ρ’s. Moreover, in Lemma 3 we have established that the assignment probability q(a, t)

is increasing in a. Then, without loss of generality we can restrict attention to score

submission recommendations weakly above the natural score t. The pointwise op-

timal ρ is by construction deterministic (a Dirac on some a) and we denote it simply as

a∗ : T → A. This optimal action recommendation solves for each t ∈ T the following:

max
a∈A

1

γ
c(a, t)t +

∂ 1
γ c(a, t)

∂t
E[x|x ≥ t]

(1 − F(t))

f (t)
.

Monotonicity Per Lemma 4 truth-telling requires that C(t) is increasing in t. Using

the pointwise optimal recommendation strategy which is deterministic, C(t) becomes:

C(t) = −
∂ 1

γ c(a∗(t), t)

∂t
. (8)

Note that C is increasing so long as −
∂ 1

γ c(a∗(t),t)

∂t is increasing in t.

In what follows, we solve for the pointwise optimal ρ and derive the corresponding

optimal q for two classes of falsification cost functions conditions (i) linear in distance

falsification costs13 and (ii) quadraric costs.14 Linear costs are trivially concave. Quad-

ratic costs are convex but the solution approach applies to this case as well as we

explain below. In the linear cost case, the solution to the relaxed program is feasible

13Among others, Li and Qiu (2023) assume linear costs.
14Among others, Frankel and Kartik (2019, 2021) analyze quadratic costs.
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for all distributions of scores. For the case of quadratic costs, the solution is feasible

for scores distributions F satisfying the monotone hazard rate property.

5.1.1 Linear cost

Suppose 1
γ c(a, t) = 1

γ |a − t|. As anticipated above, we solve for the optimal mech-

anism for the interesting range of γ in which the first-best is not feasible. This is the

range of gaming abilities such that (4) is satisfied, which for the linear costs becomes

1 − 1
γ t ≥ 0 or γ > t.

For a ≥ t, the cost is 1
γ (a − t) and its derivative is

∂ 1
γ c(a,t)

∂t = − 1
γ and

C(t) = −
∫

a∈A

∂ 1
γ c(a, t)

∂t
dρ(a|t) =

1

γ
.

The principal’s program for this cost function becomes:

max
q,ρ

∫ t

t∗

∫

a∈A

(
1

γ
(a − t)t +

1

γ
E[x|x ≥ t]

(1 − F(t))

f (t)

)

dρ(a|t) f (t)dt

subject to C increasing and Q ∈ [0, 1]

and the pointwise optimum solves:

max
a∈[t,t]

1

γ
(a − t)t +

1

γ
E[x|x ≥ t]

(1 − F(t))

f (t)
.

The expression is linear in a and the optimum is a corner solution

a∗(t) =







t for t ≥ 0

t for t < 0
and C(t) =







1
γ for t ≥ 0

0 for t < 0

which is increasing. Thus, the monotonicity constraint is satisfied for all type distri-

butions F.

For t, c(a∗(t)|t) = c(t|t) = 0, so U(t) = Q(t). We let Q(t) ≡ p∗(γ) and we proceed to

identify its value below. The assignment probability for t ≥ 0 is

Q(t) = U(t) + c(a∗(t)|t)

= U(t)−
∫ t

t
C(x)dx + c(a∗(t)|t)

= U(t)−
∫ t

t

1

γ
dx + c(a∗(t)|t)

= p∗(γ)−
1

γ
(t − t) +

1

γ
(t − t)

= p∗(γ)
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whereas for t < 0 we have c(a∗(t)|t) = c(t|t) = 0 and we obtain:

Q(t) = U(t)−
∫ t

t

1

γ
dx + c(a∗(t)|t)

= p∗(γ)−
1

γ
(t − t).

We also need to satisfy the boundary conditions, namely U(t∗) = 0 ⇐⇒ p∗(γ) =
1
γ (t − t∗). In addition, p∗(γ) ≤ 1. Suppose that 1

γ (t − t) ≤ 1 then the constraint

p∗(γ) ≤ 1 does not bind and the optimal value of t∗ maximizes

∫ 0

t∗
[p∗(γ)−

1

γ
(t− t)] f (t)dt+

∫ t

0
p∗(γ) f (t)dt =

∫ 0

t∗
[
1

γ
(t− t∗)] f (t)dt+

∫ t

0

1

γ
(t− t∗) f (t)dt

The first-order condition is
∫ t

t∗
f (t)dt = 0 which yields t∗ = t0. Together with the

probability constraint with thus obtain:

t∗ = min

{

t ∈ [t0, t] :
1

γ
(t − t) ≤ 1

}

. (9)

Therefore, whenever (t − t0) ≤ γ the probability constraint does not bind and t∗ = t0

and

p∗(γ) =
1

γ
(t − t0).

Else, that is when (t − t0) > γ, we set p∗ = 1 and t∗ satisfies. Putting everything

together:

Q∗(t) =







p∗(γ) for t ≥ 0

p∗(γ)− 1
γ (t − t) for t∗ ≤ t < 0

0 otherwise

where p∗(γ) = min
{

1, 1
γ (t − t0)

}

. We have therefore established the following pro-

position:

Proposition 3 Suppose that 1
γ c(a, t) = 1

γ |a − t|. Then, the optimal mechanism is

Q∗(t) = q∗(a∗(t), t) =







p∗(γ) for a = t

[p∗(γ)− 1
γ (t − t)]+ for t < 0

a∗(t) =







t for t ≥ 0

t for t < 0

where p∗(γ) = min
{

1, 1
γ (t − t0)

}

. When γ ≤ t the first-best is achieved, when (t − t0) ≥

γ ≥ t all positive types are approved with certainty while negatives are randomly approved.

Finally, when γ > (t− t0) all positive types are approved with p∗(γ) < 1 while are randomly

approved.

It is easy to see that the optimal mechanism can be implemented by a test that ran-

domly assigns inputed types (here types are scores) to an approval or rejection recom-
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mendation to a decision-maker. It thus does not require commitment to the decision

nor type reports.

5.2 Quadratic cost

Suppose 1
γ c(a, t) = 1

γ (a − t)2. The agent’s payoff from truth-telling writes:

U(t) = max
t′∈T

(

Q(t′)−
∫

a∈A

1

γ
(a2 + t2 − 2at)dρ(a|t′)

)

= max
t′∈T

(

Q(t′)−
∫

a∈A

1

γ
(a2 − 2at)dρ(a|t′)

)

−
1

γ
t2.

Choosing a report t′ to maximize payoff solves the following equivalent problem:

Ũ(t) = max
t′∈T

(

Q(t′)−
∫

a∈A

1

γ
(a2 − 2at)dρ(a|t′)

)

with modified cost function

c̃(a|t) ≡
1

γ
(a2 − 2at) (10)

which is linear and thus concave in t.

For a ≥ t, the derivative of c̃ is −2 1
γ a and

C̃(t) = 2
1

γ
a.

Then, the principal’s objective becomes:

∫ t

t∗
Q(t)t f (t)dt =

∫ t

t∗

∫

a∈A

(
1

γ
(a2 − 2at)t + 2

1

γ
aE[z|z ≥ t]

(1 − F(t))

f (t)

)

dρ(a|t) f (t)dt

=
∫ t

t∗

∫

a∈A

(

1

γ
(a2 − 2at)t f (t) + 2

1

γ
a
∫ t

t
z f (z)dz

)

dρ(a|t)dt

and the corresponding relaxed problem is:

max
a∈[t,t]

1

γ
(a2 − 2at)t f (t) + 2

1

γ
a

(
∫ t

t
z f (z)dz

)

.

Maximizing pointwise as before we obtain the following optimal falsification target:

a∗(t) = t −
1

t f (t)

(
∫ t

t
z f (z)dz

)

.

We now show that whenever F satisfies the monotone hazard rate property, then a∗

is increasing in t. This property will be used below to establish monotonicity of C as

well as to identify the type above which Q reaches its maximum value.
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Lemma 5 (Increasing action recommendation) Assume F has nondecreasing hazard rate.

Then, the optimal action recommendation of the relaxed problem a∗ is increasing in the natural

score for all scores [t0, t].

Verifying monotonicity Incentive compatibility requires that C(t) is increasing in t.

Using our pointwise optimal recommendation strategy which is deterministic, C(t)

becomes:

C̃(t) = −
∂c̃(a∗(t)|t)

∂t
= 2

1

γ
a∗(t) (11)

which is increasing in t as desired under MHR because as Lemma 5 established a∗ is

increasing. Thus the solution of the relaxed problem satisfies monotonicity.

Identifying the growth interval We proceed to identify the smallest type at which

the approval probability reaches its highest value. Note that for t < 0 but very close to

0, the optimal action a∗ explodes to infinity so there is some t < 0 denoted by t† such

that a∗(t†) = t therefore because a∗ is increasing we have

t† = (a∗)−1(t). (12)

By definition t∗ satisfies U(t∗) = 0. From the discussion of the case of linear costs we

also know that U(t) = p∗(γ). Also, U(t) = Ũ(t)− 1
γ t2 and U(t) + 1

γ t
2
= Ũ(t).

Leveraging these equalities and condition 3 of Lemma 4 to express Ũ we obtain:

U(t∗) = Ũ(t)−
∫ t

t∗
C(z)dz −

1

γ
t2
∗ = U(t)−

∫ t

t∗
C(z)dz +

1

γ
(t

2
− t2

∗) = 0. (13)

Following an analogous procedure as we did for linear costs, we can show that when

γ > (t − t0)2 the probability constraint does not bind and t∗ = t0 and using this value

we can pin down p∗(γ) because

U(t0) = 0 ⇐⇒ p∗(γ) =
∫ t

t0

2
1

γ
a∗(z)dz +

1

γ
(t

2
− t2

0). (14)

Instead, when (t − t0)2 ≥ γ, the probability constraint binds so p∗(γ) = 1 which

together with U(t∗) = 0 pins down t∗:

U(t∗) = 1 −
∫ t

t∗
2

1

γ
a∗(z)dz +

1

γ
(t

2
− t2

∗) = 0. (15)

Note that condition 3 of Lemma 4 implies that whenever U(t∗) = 0 then U(t) ≥ 0

for all t > t∗. Moreover by the construction of the falsification strategy for types

below t∗ (namely no falsification and zero assignment probability) we have that the

participation constraints are satisfied for all t. Therefore the pointwise optimal score

submission is:
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a∗(t) =







t for t < t∗

t − 1
t f (t)

(∫ t
t

z f (z)dz
)

for t ∈ [t∗, t†)

t for t† ≤ t

where t∗ satisfies (15) or it is equal to t0 and t† satisfies (12).

To calculate the assignment probability we use a∗ and condition 3 of Lemma 4 but

now scale back the cost to c

Q∗(t) = U(t) + c(a∗(t)|t)

= U(t) +
1

γ
t
2
−
∫ t

t
C(z)dz −

1

γ
t2 +

∫

a∈A

1

γ
(a2 + t2 − 2at)dρ∗(a|t)

= p∗(γ) +
1

γ
t
2
−
∫ t

t†
2

1

γ
dz −

∫ t†

t
2

1

γ
a∗(z)dz +

1

γ
((a∗(t))2 − 2a∗(t)t).

For γ > c(t, 0)

Q∗(t) =







0 for t < t∗

p∗(γ) + 1
γ t

2
−
∫ t

t† 2 1
γ dz −

∫ t†

t 2 1
γ a∗(z)dz + 1

γ ((a
∗(t))2 − 2a∗(t)t) for t ∈ [t∗, t†)

p∗(γ) for t ∈ [t†, t]

(16)

While, as anticipated earlier, whenever γ ≤ c(t, 0) the first-best is achieved:

Q*(t) =







0 for t < t

1 for t = t.
(17)

We have therefore established the following proposition:

Proposition 4 Suppose that 1
γ c(a, t) = 1

γ (a − t)2 and that F satisfies the monotone hazard

rate property. Then the optimal mechanism is

q∗(a∗(t), t) =







p∗(γ) for t ∈ [t†, t]

p∗(γ) + 1
γ t

2
−
∫ t

t† 2 1
γ dz −

∫ t†

t 2 1
γ a∗(z)dz + 1

γ ((a
∗(t))2 − 2a∗(t)t) for t ∈ [t∗, t†)

0 for t < t∗

a∗(t) =







t for t ∈ [t†, t]

t − 1
t f (t)

(∫ t
t z f (z)dz

)

for t ∈ [t∗, t†)

t for t < t∗

where t∗(ν) satisfies (15) or it is equal to t0 and t† satisfies (12). When γ ≤ t
2

the first-best

is achieved, when (t − t0)2 ≥ γ ≥ t
2

then p∗(γ) = 1 all positive types are approved with

certainty while negatives are randomly approved with a probability increasing in t. Finally,
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when γ > (t − t0)2 all positive types are approved with p∗(γ) = 1
γ (t − t0)2 < 1 while

negatives are randomly approved with a probability increasing in t.

As in case of linear costs, it is easy to see that the optimal mechanism can be imple-

mented by a test that randomly assigns submitted scores to an approval or rejection

recommendation to a decision-maker. It thus does not require commitment nor type

reports.

Quadratic cost: uniform distribution Suppose the F is the uniform on [−2, 1]. Then

the optimal mechanism is

a∗(t) =







t for t < −1

3t
2 − 1

2t for − 1 ≤ t ≤ − 1
3

1 for − 1
3 ≤ t

and for γ > 1:

Q*(t) =







0 for t < −1

p∗(γ)− 1
γ − 2

3γ + 1
γ

(
ln | − 1

3 | − ln |a|
)
− 1

6γ + 6t2

γ + 1
2γt2 −

3
γ for t ∈ [−1,− 1

3 )

p∗(γ) for t ∈ [− 1
3 , t)

(18)

whereas for γ ≤ 1 we get the first best. The following figure depicts the optimal

interim approval probability and the associated cost for two different values of γ:

−1 −0.5 0.5 1

−1

1

2

s

Q(t), C(t)

−1 −0.5 0.5 1

−1

1

2

s

Q(t), C(t)

Figure 1: Left panel γ = 1; Right panel γ = 4

The left panel depicts the interim approval probability for γ = 1 which is equal to the

first best. The only distortion is in terms of the agent’s utility loss due to falsification

cost which is given by the difference Q(t) − C(t). The left panel depicts the interim

approval probability for γ = 4 which involves distortions because worthy types are

assigned an object with probability less than 1 and unworthy types are also assigned

objects. The only distortion is in terms of the agent’s utility loss due to falsification

cost which is given by the difference Q(t)− C(t).
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A Proof of Lemma 2

Consider an IC DRM mechanism ν. Let q̃ satisfy

∑
q∈D

ν(q, a | t)q(x|a) = q̃(x|a) ∑
q∈D

ν(q, a | t). (19)

Note that q̃ is a valid score-based decision rule, that is, q̃ maps A to ∆(X). First, 0 ≤

q̃(x|s) ≤ 1 because

q̃(x|a) =
∑q∈D ν(q, a | t)q(x|a)

∑q∈D ν(q, a | t)

and q(x|a) ∈ [0, 1]. Moreover,

∑
x∈X

q̃(x|a) =
∑x∈X ∑q∈D ν(q, a | t)q(x|a)

∑q∈D ν(q, a | t)
=

∑q∈D ν(q, a | t) ∑
x∈X

q(x|a)

︸ ︷︷ ︸

=1

∑q∈D ν(q, a | t)
= 1.

Define a new mechanism µ = α ◦ ρ where

α(t′) = δq̃ and ρ(a | t′) ≡ ∑
q∈D

ν(q, a | t) ∀t′ ∈ T. (20)

Note that ρ is the marginal of the mechanism ν over D. Observe that the agent’s payoff

is the same under ν and µ because, conditional on each possible report t′ ∈ T, evidence

request a ∈ A and for each x ∈ X we have:

∑
q∈D

ν(q, a | t)q(x|a)[v(x, t) − c(a, t)]

= q̃(x|a) ∑
q∈D

ν(q, a | t)[v(x, t) − c(a, t)]

= q̃(x|a)ρ(a | t′)[v(x, t) − c(a, t)]

= µ(q̃, a | t′)[v(x, t) − c(a, t)]

where the first quality uses (19) and (20) and the second and third equalities use (20)

and the definition of µ. Summing up over all x ∈ X and a ∈ A we obtain:

U(t, t′, ν) = ∑
x∈X

∑
a∈A

∑
q∈D

ν(q, a | t)q(x|a)[v(x, t) − c(a, t)]

= ∑
x∈X

∑
a∈A

µ(q̃, a | t′)[v(x, t) − c(a, t)]

= U(t, t′, µ)

where U(t, t′, ·) is defined in (1).
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B Proof of Proposition 2

Fix an incentive compatible DRM that has a deterministic score recommendation rule.

Consider two types t and t′ with ρ(·|t) = ρ(·|t′) = δa. Suppose that qµ(x|a, t) 6=

qµ(x|a, t′) for some x. Truth-telling implies:

∑
x

qµ(x|a, t)β(a, t)v(x) ≥ ∑
x

qµ(x|a, t′)β(a, t)v(x) ⇐⇒ ∑
x

qµ(x|a, t)v(x) ≥ ∑
x

qµ(x|a, t′)v(x)

where the equivalence follows because β(a, t) > 0. Analogously we obtain:

∑
x

qµ(x|a, t′)β(a, t′)v(x) ≥ ∑
x

qµ(x|a, t)β(a, t′)v(x) ⇐⇒ ∑
x

qµ(x|a, t′)v(x) ≥ ∑
x

qµ(x|a, t)v(x)

Combining results to

∑
x

qµ(x|a, t′)v(x) = ∑
x

qµ(x|a, t)v(x) ⇐⇒ ∑
x

[qµ(x|a, t′)− qµ(x|a, t)]v(x) = 0

The last inequality implies that the vectors qµ(x|a, t) − qµ(x|a, t′) and v(x) are ortho-

gonal. We also know ∑x[qµ(x|a, t′) − qµ(x|a, t)]1 = 0. Letting λ(x) = qµ(x|a, t) −

qµ(x|a, t′), we summarize the above two observations as follows:

∑
x

λ(x)1 = 0 ∑
x

λ(x)v(x) = 0. (21)

Now consider the principal and suppose

∑
x

qµ(x|a, t)[w(a, t)r(x, a) + y(a, t)v(x) + ℓ(a, t)] ≥ ∑
x

qµ(x|a, t′)[w(a, t)r(x, a) + y(a, t)v(x) + ℓ(a, t)] ⇐⇒

∑
x

qµ(x|a, t)[w(a, t)r(x, a) + y(a, t)v(x)] ≥ ∑
x

qµ(x|a, t′)[w(a, t)r(x, a) + y(a, t)v(x)] ⇐⇒

∑
x

[qµ(x|a, t) − qµ(x|a, t′)][w(a, t)r(x, a) + y(a, t)v(x)] ≥ 0

∑
x

[qµ(x|a, t) − qµ(x|a, t′)]

[

r(x, a) +
y(a, t)

w(a, t)
v(x)

]

≥ 0

∑
x

[qµ(x|a, t) − qµ(x|a, t′)][r(x, a) + z(a, t)v(x)] ≥ 0

where the first implication uses the first equality in (21), the second is a simple rewrit-

ing, the third uses the fact that w(a, t) > 0 and in the fourth we let z(a, t) ≡ y(a,t)
w(a,t)

. The

above final inequality writes as

∑
x

[λ(x)r(x, a) + z(a, t)λ(x)v(x)] ≥ 0 ⇐⇒ ∑
x

λ(x)r(x, a) ≥ 0

where the equivalence uses (21). The final inequality implies that the principal ranks

the lotteries qµ(·|a, t) and qµ(·|a, t′) in the same way no matter the agent’s type realiz-

ation. And because agent types are indifferent we can offer the principal’s preferred

lottery that only depends on a and we call it q(·|a).
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C Proof of Lemma 3

Consider a type t and all scores on the support of t’s falsification strategy. Denote them

A(t). Suppose, for simplicity, A(t) is finite. The idea extends to arbitrary supports.

Rank its elements from smallest to largest and label so that

a1 < a2 < · · · < an

relabel the corresponding assignment probabilities so that

qi = q(ai, t)

and falsification requests so that

ρi = ρ(ai, t)

Trivially, this relabelling by construction ensures the payoff to t and to mimicking t′ is

the same. To see this note:

Q(t) =
n

∑
i=1

ρiqi =
n

∑
i=1

ρ(ai, t)a(ai , t) = ∑
a∈A(t)

ρ(a, t)a(s, t) and

C(t) =
n

∑
i=1

ρic(ai, t) =
n

∑
i=1

ρ(ai , t)c(ai, t) = ∑
a∈A(t)

ρ(a, t)c(a, t) and

C(t | t′) =
n

∑
i=1

ρic(ai, t′) =
n

∑
i=1

ρ(ai, t)c(ai, t′) = ∑
a∈A(t)

ρ(a, t)c(a, t′).

If q1 ≥ 1, then because q1 ≤ 1 this is only possible when qi = 1∀i ∈ {1, . . . , n} hence

the approval probability is increasing in s and there is nothing to prove. If the approval

probability is not increasing, then

q1 < 1. (22)

We construct an increasing payoff-equivalent approval probability as follows:

q̃i = c(ai, t)∀i < n and q̃n =
ρnqn + ∑i 6=n qiρi − ∑i 6=n c(ai, t)iρi

ρn
(23)

ρn q̃n + ∑
i 6=n

c(ai, t)iρi = ρnqn + ∑
i 6=n

qiρi ≥
n

∑
i=1

ρ(ai, t)c(ai, t) = ∑
a∈A(t)

ρ(a, t)c(a, t) (24)

where the last inequality follows from obedience that requires

qi − c(ai, t) ≥ 0∀i.
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Then, for (24) to hold, it must be the case that q̃n ≥ c(an, t) which ensures obedience

and that q̃ is increasing given that c(a, t) is increasing in s which implies that

q̃n ≥ c(an, t) ≥ c(sn−1, t) = q̃n−1 ≥ . . . c(s1, t) = q̃1.

The problem is that it is possible that q̃n > 1. In that case we modify the construction

as follows: Set ân = 1 and assigning the difference to lower scores:

dn ≡
ρnqn + ∑i 6=n qiρi − ∑i 6=n c(ai, t)iρi

ρn
− 1.

We use this equivalent expression:

ρndn = ρnqn + ∑
i 6=n

qiρi − ∑
i 6=n

c(ai, t)iρi − ρn

to increase q̃n−1 to ân−1 = q̃n−1 + dn−1 where dn−1 satisfies

dn−1ρn−1 = dnρn.

If ân−1 ≤ 1. We are done. Otherwise, continue in this way. At some point we will

stop because (22) implies that we cannot have all 1’s. The resulting assignment is

increasing, satisfies OB because all assignment probabilities assigned to a score are by

construction higher than the cost type t incurs to generate that score. Also,

ρn + dn−1ρn−1 + ∑
i 6=n

ρic(st|t)

= ρn + dnρn + ∑
i 6=n

ρic(st|t)

= ρn + ρnqn + ∑
i 6=n

qiρi − ∑
i 6=n

c(ai, t)iρi − ρn + ∑
i 6=n

ρic(si, t)

= ρnqn + ∑
i 6=n

qiρi − ∑
i 6=n

c(ai, t)ρi + ∑
i 6=n

ρic(si, t)

= Q(t).

Hence the modification results to the same expected approval probability and the

same falsification costs for all types and it is payoff equivalent for the agent and the

designer.
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D Proof of Lemma 5

Differentiating a∗ results to:

∂a∗(t)

∂t
= 2 +

1

t2 f (t)

(
∫ t

t
z f (z)dz

)

+
f ′(t)

t( f (t))2

(
∫ t

t
z f (z)dz

)

≥ 2 +
1

t2 f (t)

(
∫ t

t
z f (z)dz

)

+
f ′(t)

t( f (t))2

(
∫ t

t
t f (z)dz

)

= 2 +
1

t2 f (t)

(
∫ t

t
z f (z)dz

)

+ f ′(t)
1 − F(t)

( f (t))2

where the inequality follows because t ≤ z. Now for t ∈ [t0, t], E[z|z ≥ t] ≥ 0, which

implies that only the last term, namely f ′(t) 1−F(t)
( f (t))2 could be negative.

Recall that the derivative of the usual virtual valuation, namely J(t) = t − 1−F(t)
f (t) is:

∂J(t)

∂t
= 2 + f ′(t)

1 − F(t)

( f (t))2
.

A sufficient condition for J to be increasing is that the distribution has nondecreasing

hazard rate. More generally, whenever the usual virtual valuation is increasing, the

optimal recommended action is increasing. This is because the derivative is ∂a∗(t)
∂t =

∂J(t)
∂t + 1

t2 f (t)

(∫ t
t z f (z)dz

)

and the term we are adding is positive, hence increasing J

(which is ensured by MHR) suffices for a∗ to be increasing.
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