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Abstract
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1 Introduction

Goods, services and rewards1 are often allocated via non-market mechanisms, either

due to institutional constraints or because monetary transfers are ineffective at target-

ing deserving recipients.2 To target eligible agents, non-market allocation mechanisms

must rely on data about their characteristics. For example, seats in schools are as-

signed using priorities that combine multiple criteria, green labels are awarded based

on measured emissions, and public housing is allocated on the basis of criteria such

as household income. Eligibility is in many cases assessed through a score measuring

characteristics or performance, acting as a proxy for the value of assigning an object

to an agent.

However, reliance on the score creates strong incentives to game it. Consequently,

practices such as falsification, forgery, greenwashing, teaching to the test, and manipu-

lating statistics are commonplace. For example, parents fake addresses to gain admis-

sion to desirable public schools (Bjerre-Nielsen, Christensen, Gandil, and Sievertsen,

2023), firms underreport their workforce size to avoid legal obligations (Askenazy,

Breda, Moreau, and Pecheu, 2022), and doctors manipulate their patients’ priority

in organ transplant waiting lists3 (Bolton, 2018; McMichael, 2022). Throughout the

paper, we use the term falsification as a broad category that encompasses gaming,

manipulation, or any other socially wasteful and individually costly activities agents

undertake to produce an altered score.

Falsification is not only wasteful, it is socially harmful. First, it distorts achievable

assignments, unfairly penalizing agents for whom falsification is more costly.4 Second,

it deteriorates the informational content of the score. This is an instance of Goodhart’s

law: “when a measure becomes a target, it ceases to be a good measure.” For example,

greenwashing can blur our assessment of emissions levels. Third, it may render the

mechanism politically unsustainable if it comes under scrutiny after falsification is

detected. Fourth, it can erode trust and deplete the supply of objects to allocate. In

Germany, for example, a scandal involving the manipulation of the liver allocation

system by transplant providers led to a 20%-40% erosion in organ donation (Bolton,

2018). Fifth, there is also evidence that dishonest behavior spreads in society (see,

1Goods include public housing, seats in schools and vaccines; services include credit, training,
education and financial assistance programs; rewards include promotions, labels and certificates
granted to businesses meeting certain emissions or social responsibility criteria.

2See Condorelli (2013) and Akbarpour, Dworczak, and Kominers (2024) for a theory of when
non-market mechanisms are optimal.

3Schummer (2021) explores the impact of waiting list manipulations in a theoretical model.
4For example, Bjerre-Nielsen et al. (2023) show that priority gaming in school choice mechanisms

resulted in better assignments for those who engaged in such practices and adversely affected others.
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for example, Rincke and Traxler, 2011; Galbiati and Zanella, 2012; Alm, Bloomquist,

and McKee, 2017; Ajzenman, 2021).

In this paper, we show how to maximize allocative efficiency while ensuring fal-

sification proofness, meaning that agents cannot gain by falsifying their scores. Fal-

sification proofness eliminates negative externalities, leads to fairer mechanisms, and

improves the welfare of agents. Falsification-proof mechanisms are fair in the sense

that they guarantee the same assignment probability to all agents with the same

score. They can improve the welfare of agents by eliminating the cost they incur from

falsifying,5 providing greater benefits to those with lower gaming abilities, whose costs

are higher.

Specifically, we address the problem of allocating a fixed mass of homogeneous

objects (or prizes or labels) to a heterogeneous population of agents using non-market

mechanisms based on scores. The score is a publicly available but falsifiable metric

that measures an agent’s private characteristics. If agents do not falsify, they produce

a natural score, which reflects their true characteristics.6 Agents who falsify produce

an altered score at a cost. We assume that an agent’s natural score is positively

correlated with their worth: the designer’s value of assigning an object to the agent.

The designer’s outside option of retaining an object has value zero. We characterize

the falsification-proof mechanism that maximizes the aggregate worth of rewarded

agents. It allocates the good stochastically with a probability that increases smoothly

with the score, generating both rejection and allocation errors.

What is the welfare impact of falsification proofness? In standard mechanism

design, misreporting is costless, and truth-telling is inconsequential due to the rev-

elation principle. However, in Perez-Richet and Skreta (2022) we show that, under

costly falsification, optimal mechanisms harness falsification to enhance allocative ef-

ficiency.7 Therefore, requiring falsification proofness results in a loss of allocative

efficiency for the designer. However, we find that it has the opposite effect on agents.

We show that, in the absence of resource and quota constraints, agents prefer the

optimal falsification-proof mechanism to the optimal mechanism, regardless of their

natural score (Proposition 4). Furthermore, we show that the loss in allocative effi-

5In the computer science literature, Milli, Miller, Dragan, and Hardt (2019) consider optimal
binary classifiers when agents are strategic (i.e., falsify). They show that optimal classifiers can gen-
erate a significant cost in falsification for the agents, and argue that this cost bears disproportionately
on disadvantaged groups.

6Frankel and Kartik (2019) introduced the term natural action to refer to the unmanipulated
action of a given type.

7Perez-Richet and Skreta (2022) derive optimal tests which correspond to optimal allocation
mechanisms in the current framework. See also our discussion on the value of commitment in
Section 6 (in particular, Proposition 8) for a related result.
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ciency due to falsification proofness can be arbitrarily small and the gain to agents

arbitrarily large if the falsification technology has increasing returns to scale (Propo-

sition 5). These results confirm that, even abstracting from externality and fairness

concerns, falsification-proof mechanisms can serve as a cost-effective means to enhance

agents’ welfare. The central practical message of this paper is that falsification-proof

mechanisms can offer a valuable alternative for a planner who values both allocative

efficiency and agents’ welfare.

We formulate a general model with multiple groups of heterogeneous agents, a

resource constraint and possible group-specific quotas. While these allocative con-

straints introduce rich interdependency across groups and interesting economic ef-

fects that we describe later, the key force shaping optimal allocation rules is the

falsification-proofness requirement. Furthermore, allocative constraints are often ab-

sent when objects are immaterial, such as services, labels, certification or awards. We,

therefore, start by solving a baseline problem that focuses on the falsification-proofness

constraint while abstracting from allocative constraints and group multiplicity. The

designer’s objective in this problem incorporates a fixed arbitrary outside option value

which we later use as an adjustment tool to satisfy the resource and quota constraints.

Solving the baseline problem is also a key step in solving the full problem.

We solve the baseline problem in closed form for two broad classes of cost func-

tions that capture different falsification technologies. If the cost function has upward

decreasing differences,8 the falsification-proofness constraints bind locally, and we use

a first-order approach to solve it. If, instead, the cost function has upward increasing

differences,9 the falsification-proofness constraints do not bind locally, which pre-

cludes the use of the first-order approach. To address this challenge, we transform

the baseline problem into a program that is equivalent to the dual of the classical

Monge-Kantorovich optimal transport problem, which we leverage to characterize the

optimal allocation rule in Theorem 1.10 While optimal transport is increasingly

used in economics, this connection to the dual problem is novel as we explain in the

literature review (Section 7).

We study how changes in falsification technology or the distribution of natural

scores affect the solution to the baseline problem. We analyze the effects of changing

the distribution of scores and returns to scale in the falsification technology in Ap-

8UDD technologies include costs that are superadditive in the amount of falsification, capturing
decreasing returns to scale in falsification.

9UID technologies include costs that are subadditive in the amount of falsification, capturing
increasing returns to scale in falsification.

10Because the first-order approach is standard, the corresponding theorem for the UDD case
appears in Appendix B.
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pendix D. In Section 4, we focus on the effect of gaming ability, defined as the inverse

of a multiplicative scaling factor on the least cost of falsification in the population.

This result yields interesting economic insights.

Since agents are heterogeneous, but only those with the lowest falsification cost

(or highest gaming ability) shape the optimal allocation rule that applies to all, their

presence exerts an externality on others. We can interpret our comparative statics

exercise as an evaluation of this externality, since the effect of removing the highest

gaming ability agents from the group results in a decrease in the gaming ability level

that shapes the optimal rule. We find that the externality exerted by the highest

gaming ability agents is nuanced: it is positive on low-score agents and negative on

high-score agents if these agents have sufficiently low gaming ability.11 We can also

use our comparative statics exercise to assess the effect of conditioning allocation on

observables. With the ability to distinguish between a group of high-gaming ability

agents and a group of low-gaming ability agents, the designer may choose to treat

them as a single group or as distinct groups. This choice makes no difference for

the high-gaming ability group, as it always faces the same optimal falsification-proof

rule shaped by high gaming ability. In contrast, the effect on the low-gaming ability

group is subtle. Since being insulated from the other group amounts to a decrease

in gaming ability for this group, the effect can be assessed through our comparative

statics result. Therefore, the effect of discrimination on the low-gaming ability group

can be either uniformly beneficial, uniformly harmful, or beneficial for high-score

agents while harmful for low-score agents.

We then solve the full problem of the designer with multiple groups and allocative

constraints by splitting it into an across problem and a series of within problems.

Each within problem deals with the allocation of a fixed mass of objects according

to scores within a group. The across problem consists of allocating objects across

groups while satisfying the quota and resource constraints. We show in Theorem 2

that the solution to the within problem coincides with the solution of a baseline

problem where the designer’s outside option has been adjusted to ensure that the

desired mass of objects is allocated. We then characterize the solution to the across

problem in Theorem 3, and provide an algorithm to find it through mass adjustments.

We show that the designer’s welfare decreases with gaming ability and increases

with first-order stochastic dominance shifts in score distribution. Comparative statics

for the optimal rule display rich within-group and across-group effects. A change

11If the gaming ability of these least-cost agents is sufficiently high, the effect becomes uniform
but may be either positive or negative depending on expected worth in the population.
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in characteristics has direct effects on the baseline allocation rule for that group,

holding the group’s outside option constant. Direct effects can alter the mass of

objects assigned to the group, necessitating adjustments in the outside options of all

groups to maintain constraint feasibility. These adjustments generate within-group

and across-group indirect effects. In Proposition 6, we show that indirect effects,

because they work through outside option adjustments, impact agents of all scores

uniformly, either increasing or decreasing their allocation probability.

To illustrate these indirect effects, we study the consequences of lowering gaming

ability in one group, while the other group benefits from a quota in a two-group

setting. If the quota is low, the indirect effect of the change must be absorbed by

both groups. Hence, all agents in the second group are harmed. In the first group, the

direct and indirect effects combine, increasing agents’ ex ante welfare, but harming

low-score agents while benefiting high-score agents. If the quota is high, it binds

both before and after the change, shielding the second group from indirect effects,

which must therefore be entirely absorbed by the first group. Hence, the first group

receives the same mass of goods on aggregate, but low-score agents are harmed while

high-score agents gain.

In Section 6, we discuss some robustness properties of optimal falsification-proof

rules. Since optimal falsification-proof allocation rules guard against falsification by

the least-cost agents, they are also optimal for a max-minimizing designer seeking

robustness against unknown falsification technologies. Additionally, we highlight that

score-based allocation rules perform just as well as direct recommendation mecha-

nisms, which require more commitment from the designer, but are simpler because

score-based rule do not rely on a mediator. Additionally, we highlight that score-based

allocation rules are without loss of generality and thus perform just as well as direct

recommendation mechanisms. Finally, we show that optimal falsification-proof rules

can be implemented by a designer who acts as a certification intermediary and can

only design information structures while lacking control over the ultimate allocation

decision (i.e., no commitment to the decision). Thus, the optimal rules are robust to

varying levels of commitment on the part of the designer.

The remainder of the paper is structured as follows. Section 2 describes the model.

Section 3 analyzes the baseline problem. Section 4 studies the effects of changes in

gaming ability and includes a welfare analysis. Section 5 solves the full designer’s

problem, provides a comparative statics analysis, and illustrates across-group feedback

effects. We conclude with a discussion in Section 6 and a literature review in Section 7.

All proofs and some additional results are in the Appendix.
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2 The allocation problem

Framework. The designer seeks to allocate a mass ρ̄ ≤ 1 of indivisible and homo-

geneous objects to a unit mass of heterogeneous agents without transfers. Each agent

is characterized by a private type θ =
(
i, s, k

)
and a scalar w that captures their

worth, that is, the designer’s value of allocating an object to them. Without loss of

generality, the value of the outside option (not allocating an object) is normalized to

0. Agents may know their worth if θ is a sufficient statistics for w, or not.

The first dimension of the type i ∈ I encompasses all relevant publicly observable

and unfalsifiable characteristics of an agent. We refer to i as an agent’s group, and

assume I is a finite set. The mass of group i is µi > 0, where
∑

i µi = 1.

We assume the existence of an exogenous one-dimensional metric, the score, mea-

suring some private characteristics of the agent. The second dimension of an agent’s

type s ∈ Si ⊆ R is their natural score, which they obtain when they do not interfere

with the measuring technology. An agent can falsify their score at a cost, so the

designer observes a falsified score t instead of their natural score s.

The last dimension of type k ∈ Ki,s is a vector of privately known characteris-

tics that includes an agent’s value for the good v(k) > 0, information about their

individual falsification cost, and possibly other characteristics correlated with their

worth.

Distributional assumptions. Each agent draws a vector of characteristics (θ, w)

i.i.d. from a joint distribution. Hence the different dimensions of an agent’s vector

of characteristics can be, and typically are, correlated; but they are independent

from other agents’ characteristics. Fi denotes the cumulative distribution function of

natural score conditional on i, which we assume to have full support on an interval

Si = [si, si], and no atoms. Conditional on (i, s), the remainder of the type vector is

fully supported on Ki,s.

Designer and agent payoffs. We assume that the worth w is bounded and inte-

grable conditional on (i, s). We denote the corresponding expected worth by wi(s) =

E(w|i, s), and by w̄i = E(w|i) the expected worth in group i. The designer’s payoff

from assigning an object to a group i agent with score s is wi(s). We assume that

score and worth are positively related in the sense that, for every group i, wi(s) is

strictly increasing. The expected payoff of an agent is αv − C(t, θ), where α is the

probability of getting an object, and C(t, θ) ≥ 0 defines the cost for type θ to produce

a score t.
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Not falsifying is costless so C(s, θ) = 0 for an agent of type θ = (i, s, k). The

cost of producing score t depends not only on the natural score s, but also on k.

The falsification cost may reflect technical costs, psychological lying costs as well as

expected penalties.

Falsification-proof mechanisms. We restrict the designer to falsification-proof

mechanisms, that is, mechanisms that incentivize agents to produce their natural

scores. Under this assumption, we show in Perez-Richet and Skreta (2023) that

it is without loss of generality to restrict attention to score-based allocation rules

α = (αi)i∈I , where αi : Si → [0, 1] is the probability that an object is allocated to an

agent from group i conditional on their produced score. Such rules only condition on

the observable dimension i, and the score s, but not on k. An (incomplete) intuition

of why it is without loss of generality is that, since all agents desire an object, also

conditioning the allocation on k would then lead all agents from the same group i

who produce the same score s to pool on claiming k′ that maximizes the probability

of receiving an object.12 Among agents from the same group and with the same

natural score, falsification is most tempting for those with the highest valuation and

lowest falsification costs. Therefore, a mechanism is falsification-proof if and only if

it satisfies the following constraint13

∀(i, s, t), αi(t)− αi(s) ≤ ci(t|s), (FPC)

where ci(t|s) = infk∈Kis

1
v(k)

C(t, i, s, k) is the least cost for a member of group i with

natural score s to falsify to t.14 We refer to ci as the least-cost or simply cost function

for group i.

Falsification cost. We assume that the least-cost functions are monotonic for up-

ward falsifications: if t ≥ s, then ci(t|s) is (locally) strictly increasing in t and −s.
We also assume that the least-cost function satisfies a regularity assumption.

12Lemma 1 in Akbarpour et al. (2024) makes a similar point in a setting where all dimensions are
costless to misrepresent, and transfers are allowed: the principal can only elicit information on the
dimensions that correlate with agents’ willingness to pay.

13We can also interpret (FPC) as being motivated by inequality awareness as in Akbarpour et al.
(2024). The cost ci(t|s) then acts as a bound on allocative inequality between score pairs s and t.
We thank Ricardo Alonso for suggesting this interpretation.

14This infimum exists because C(t, θ) is bounded below by 0. We assume that this bound is tight
in the sense that, for every i, s, t and every ε > 0, there exists a strictly positive mass of agents from
group i with natural score s whose cost of falsifying to t is lower than ci(t|s) + ε.
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Assumption 1 (Regularity). The least-cost function c(t|s) is continuously differen-

tiable in t on [s, s], and in s on [s, t], and there exists Λ > 0 such that, for every s, t,

c(t|s) ≤ Λ|t− s|.

We denote the partial derivatives of a regular cost function c(t|s) by ct and cs.

Depending on the context, the cost function may take different forms, so it is useful to

rely on flexible assumptions. We characterize optimal allocation rules for the following

two salient classes of cost functions.

Definition 1 (Upward Differences). A cost function c(t|s) has upward increasing

differences if, for all s < s′ ≤ t < t′,

c(t′|s′)− c(t|s′) ≥ c(t′|s)− c(t|s), (UID)

and upward decreasing differences if, for all s < s′ ≤ t < t′,

c(t′|s′)− c(t|s′) ≤ c(t′|s)− c(t|s). (UDD)

These conditions only bear on upward falsification because we show that downward

falsification is never beneficial under optimal allocation rules. To gain intuition about

their interpretation, it is useful to consider different families of cost functions and

to reason as if the least cost function of the group c were a particular agent’s cost

function instead.

Example 1 (The Euclidean family). A cost function is Euclidean if c(t|s) = C((t−
s)+), where C : R+ → R+ is a continuously differentiable increasing function with

C(0) = 0. Euclidean costs are a convenient modeling choice often used in the litera-

ture. They satisfy (UID) if C is concave (or, more generally, subadditive) and (UDD)

if C is convex (or, more generally, superadditive). The monotonicity of upward dif-

ferences captures economies of scale in falsification t − s: (UID) implies increasing

returns to scale, while (UDD) implies decreasing returns to scale. Both increasing

and decreasing returns to scale in falsification may arise in different contexts. If the

designer’s characteristic of interest (the score) is, for example, emission levels of cars

models, it is reasonable to assume increasing returns to scale in falsification: for small

amounts of emissions to conceal, the cost rises sharply, but once the agent has paid

the setup costs to develop software that lowers emissions under testing conditions,

concealing additional emissions becomes less costly. If the natural score measures

an analytical skill, decreasing returns to scale may be more appropriate: an agent

can memorize solutions to some test problems, but achieving a significantly higher
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score requires learning progressively more or increasingly difficult problems, raising

the marginal cost. Another example is when falsification costs arise from a linear de-

tection probability πx and a fine Φx+Φ0, both of which increase with the falsification

level x. In this case, the Euclidean cost C(x) = πx(Φx+ Φ0) satisfies (UDD). ⋄

Example 2 (The shifted Euclidean family). We generalize the Euclidean class by

considering Shifted Euclidean cost functions of the form c(t|s) = κ(s)C
(
(t − s)+

)
.

This family captures correlations between the natural score and gaming ability,15 which

is captured by 1/κ(s). For instance, consider the shifted linear cost function where

C(x) = x. In this case, c satisfies (UID) if κ(s) increases with s, and (UDD) if κ(s)

decreases with s. If the natural score reflects financial need or hardship, it is natural to

assume that gaming becomes more challenging at higher natural scores. Conversely, if

the natural score reflects skill or aptitude, gaming may become easier at higher natural

scores. ⋄

The (UID) class is particularly suited for studying situations in which falsification

involves substantial setup costs. Furthermore, we derived the unconstrained optimal

allocation rule in Perez-Richet and Skreta (2022). This allows us to analyze the

welfare consequences of imposing falsification-proofness under (UID) in Section 4.2.

Allocative constraints. In many applications we consider, allocative constraints

are irrelevant because ’objects’ are immaterial, such as services, certificates, labels

or awards. To cover other applications, we allow for a resource constraint and quota

constraints. The resource constraint requires

∑
i

µi

∫ si

si

αi(s)dFi(s) ≤ ρ̄. (RC)

In addition, the designer may have to satisfy a system of exogenous quotas ϕ =

(ϕi)i∈I , where ϕi ∈ [0, 1] is a fraction of objects reserved for group i, with
∑

i ϕi ≤ 1,

and ϕiρ̄ ≤ µi. The quota constraints are

∀i, µi

∫ si

si

αi(s)dFi(s) ≥ ϕiρ̄. (QC)

A mechanism is feasible if it satisfies these allocative constraints. If ρ̄ = 1 and ϕ = 0,

the problem has no allocative constraints. Feasible mechanisms also need to satisfy

15We follow the terminology of Frankel and Kartik (2019).
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probability constraints:

∀(i, s) 0 ≤ αi(s) ≤ 1. (PC)

Designer’s program. The restriction to falsification-proof mechanisms implies the

agent’s observed score is the natural one, so αi writes as function on the natural score

s rather than falsified scores. The designer’s program is to choose a score-based

allocation rule α that solves:

max
(αi)i∈I

∑
i

µi

∫
Si

wi(s)αi(s)dFi(s) (P)

s.t. (PC), (FPC), (RC), (QC).

In Section 3, we address the baseline problem, a key subproblem ignoring group

multiplicity and allocative constraints. In Section 5, we solve (P) by decomposing it

into within and across problems: the former allocates a fixed object mass within a

group, while the latter allocates object masses across groups.

3 Baseline problem

We first solve a baseline program that abstracts from group multiplicity and allocative

constraints. We therefore drop the group index i in this section.

max
α

∫
S

α(s){w(s)− ŵ}dF (s) s.t. (FPC), (PC). (BP)

The term w(s) − ŵ in the objective represents the allocative surplus relative to

an exogenous outside option ŵ. Let ŝ denote the eligibility threshold, defined by

w(ŝ) = ŵ. Allocative surplus is positive for eligible scores, s ≥ ŝ, and negative for

ineligible scores, s < ŝ. We refer to the solution to the baseline problem as the baseline

allocation rule.

Solving (BP) is a key step in solving the designer’s program (P) and is also of inde-

pendent interest. First, it isolates the forces introduced by the falsification-proofness

constraint. Second, when objects are immaterial, such as labels, it is natural to as-

sume the absence of allocative constraints. In this scenario, the allocation problems

become independent between groups and reduce to the baseline problem with an out-

side option ŵ = 0 within each group. Finally, a technical contribution of this paper

is the connection it establishes between the baseline problem and optimal transport

theory.
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To solve the designer’s program (P), which involves multiple groups and allocative

constraints, we use a baseline allocation rule within each group and adjust outside

options to meet resource and quota constraints. Thus, eligibility thresholds in each

group are endogenous in the general problem.

3.1 Preliminary analysis

Smoothness and monotonicity. The first-best rule for the designer is to allocate

objects to agents with eligible scores and withhold them from those with ineligible

scores. It is not falsification proof: an agent with score just below the eligibility

threshold can gain by falsifying to the threshold. More generally, falsification proof-

ness bounds the growth of allocation probability between scores by the cost of falsi-

fying from one to the other. Falsification-proof rules therefore inherit the smoothness

of the cost function. Specifically, we show in Appendix A that they are Lipschitz con-

tinuous. We show that optimal falsification proof rules must also be monotonic, and

flat outside of a growth interval around the eligibility threshold whose size depends

on the magnitude of falsification costs.

Priority. A group has high-score priority if its expected worth w̄ = E(w) exceeds

the outside option ŵ, low-score priority if w̄ < ŵ, and neutral priority if w̄ = ŵ. In

the absence of information on scores, the designer would allocate objects to all agents

in a high-score priority group and not allocate any object in a low-score priority

group. In the baseline problem, priority determines whether it is more important

for the designer to ensure that top scores obtain an object with certainty (high-score

priority), or to ensure that lowest scores do not obtain an object (low-score priority).

Since a group’s priority is determined by its outside option, priorities are endogenous

in the original problem (P).

Cumulative surplus functions. To solve the baseline problem, we introduce cu-

mulative surplus functions, which appear in the designer’s objective when integrating

by parts. The upward cumulative surplus at s is the total amount of surplus generated

by scores above s. It corresponds to the marginal gain of uniformly increasing the

allocation probability of all such scores:

W+(s, ŵ) =

∫ s

s

{
w(x)− ŵ

}
dF (x).
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The downward cumulative surplus at s is the total amount of negative surplus gener-

ated by scores below s, and corresponds to the marginal gain of uniformly decreasing

the allocation probability of all such scores:

W−(s, ŵ) = −
∫ s

s

{
w(x)− ŵ

}
dF (x) =W+(s, ŵ)−

(
w̄ − ŵ

)
.

In the analysis, we work with upward cumulative surplus under low-score priority and

with downward cumulative surplus under high-score priority. To unify notations, we

define a composite cumulative surplus function that encompasses both cases:

W(z, ŵ) =W+(z, ŵ)1w̄≤ŵ+W−(z, ŵ)1w̄>ŵ .

Next, we list useful properties of the cumulative surplus functions. Figure 1 illus-

trates the functions and their properties.

Lemma 1 (Properties of cumulative surplus).

(i) W(·, ŵ) is continuous and single-peaked at ŝ.

(ii) For every ν ∈ [0,W(ŝ, ŵ)], there exist a unique pair of scores s∗(ν) ≤ ŝ ≤ s∗(ν)

such that W
(
s∗(ν), ŵ

)
=W

(
s∗(ν), ŵ

)
= ν.

(iii) W(s, ŵ) ≥ ν if and only if s ∈
[
s∗(ν), s

∗(ν)
]
,

(iv) s∗(ν) and −s∗(ν) are continuous and increasing functions,

(v) s∗(0) = s under low-score priority, and s∗(0) = s under high-score priority.

Under neutral priority, [s∗(0), s
∗(0)] = [s, s].

Matching ineligible and eligible scores. We use cumulative surplus to build a

matching function between ineligible and eligible scores, also illustrated in Figure 1.

Specifically, we define the decreasing matching function m : [s∗(0), ŝ]→ [ŝ, s∗(0)] that

maps each ineligible score s ∈ [s∗(0), ŝ] to an eligible score m(s) ∈ [ŝ, s∗(0)] such that

W(s, ŵ) =W
(
m(s), ŵ

)
. We say that a pair (s∗, s

∗) is a matching pair if s∗ = m(s∗).

The matching function plays an important role in the analysis for two reasons.

First, it describes the (nonlocal) binding constraints in the (UID) case. Second,

together with the Lagrange multiplier, ν, on the probability constraint, it determines

the growth interval of the allocation rule: Point (ii) of Lemma 1 implies that matching
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Figure 1: Cumulative surplus, matching pairs and growth interval.

pairs characterize a set of intervals [s∗, s
∗] around the eligibility threshold ŝ that satisfy

the following Zero Average Surplus condition:

E
(
w − ŵ|s∗ ≤ s ≤ s∗

)
= 0. (ZAS)

We call such intervals (ZAS) intervals. They form a family of nested intervals around

the eligibility threshold, ranging from the maximal interval [s∗(0), s
∗(0)] to the mini-

mal interval {ŝ}.
We show in Appendix A that the growth interval of a baseline rule is necessarily

a ZAS interval. This implies that optimal allocation rules exhibit bunching at the

bottom in low-score priority groups, since scores in [s, s∗(0)] receive an object with

null probability. In contrast, there is bunching at the top in high-score priority groups,

since scores in [s∗(0), s] receive an object with probability one.

The simplified program. In Appendix A, we show how to construct a solution to

the baseline problem by first solving the following simplified program

max
α

∫ s∗

s∗

{
w(s)− ŵ

}
α(s)dF (s)

s.t. α(t)− α(s) ≤ c(t|s) ∀s∗ ≤ s < t ≤ s∗,

which limits the integral in the objective function to a ZAS interval [s∗, s
∗], only con-

siders falsification-proofness constraints over this interval, and relaxes the probability

constraint. We then obtain the baseline rule via the following procedure.
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Procedure 1.

• Step 1. Solve the simplified program for all [s∗, s
∗]. The solution α is deter-

mined up to an additive constant.

• Step 2. Select (s∗, s
∗) to either (i) saturate the probability constraint: α(s∗)−

α(s∗) = 1, or (ii) set (s∗, s
∗) =

(
s∗(0), s

∗(0)
)
.

• Step 3. Set the additive constant so that α(s∗) = 0 under low-score priority,

α(s∗) = 1 under high-score priority, or to any value such that α(s∗)−α(s∗) ≤ 1

under neutral priority.

• Step 4. Set α(s) = α(s∗) for s < s∗, and α(s) = α(s∗) for s > s∗.

⋄

Step 1 determines the growth rate and shape on the growth interval. Step 2

identifies the growth interval. Step 3 sets the maximum allocation probability based

on group priority. Step 4 extends the rule beyond the growth interval by assigning

the minimum probability to scores below s∗ and the maximum probability to scores

above s∗.

3.2 Baseline rules

The shape of the baseline rule on the growth interval is determined by the binding up-

ward falsification-proofness constraints. Under (UDD), these constraints bind locally,

allowing for a first-order approach. In contrast, under (UID), the constraints bind

non-locally, rendering the first-order approach inadequate. Instead, we solve the sim-

plified program by establishing a connection with the dual of the Monge-Kantorovich

optimal transport problem. We focus on the methodology under (UID) technologies.

For (UDD), we provide the formula of the baseline rule with an intuitive explanation,

relegating the analysis to Appendix B, as it involves more standard arguments.

Optimal allocation through optimal transport. We start by drawing a con-

nection between the simplified program and optimal transport theory. We consider

the following relaxation of the simplified problem:

max
α

∫ ŝ

s∗

α(s){w(s)− ŵ}dF (s) +
∫ s∗

ŝ

α(t){w(t)− ŵ}dF (t)

s.t. α(t)− α(s) ≤ c(t|s), ∀s∗ ≤ s ≤ ŝ ≤ t ≤ s∗,
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in which we only require falsification proofness to prevent ineligible scores from fal-

sifying to eligible targets, and separate the objective function between ineligible and

eligible scores.

In our model, a mass of agents is distributed over the space of scores, which we

can think of as locations. Each (infinitesimal) agent in “location” s is endowed with

an amount w(s)− ŵ of surplus. Alternatively, we can describe the problem in terms

of masses of negative or positive surplus available at different locations. Each location

s then harbors a mass |w(s) − ŵ|dF (s) of negative surplus if s is ineligible, and of

positive surplus if s is eligible. We frame the program as a problem involving the

transportation of negative surplus from ineligible locations to eligible locations that

harbor positive surplus. To see that, we start by changing the variables of this

problem to identify scores (or locations) by their distance to the eligibility threshold,

letting y = ŝ−s for s ≤ ŝ, and z = t−ŝ for t ≥ ŝ. These variables belong, respectively,

to the space of negative surplus locations Y = [0, ŝ − s∗], and the space of positive

surplus locations Z = [0, s∗−ŝ]. By (ZAS), each of these spaces harbors the same total

mass of surplus. We endow each of them with a probability distribution measuring

the fraction of this total mass of surplus, as given by the cumulative density functions

P (y) =
W(ŝ, ŵ)−W(ŝ− y, ŵ)
W(ŝ, ŵ)−W(s∗, ŵ)

,

and

Q(z) =
W(ŝ, ŵ)−W(ŝ+ z, ŵ)

W(ŝ, ŵ)−W(s∗, ŵ)
,

where the normalizing factor is the total mass. Note that dP (y) ∝ |w(ŝ − y) −
ŵ|dF (ŝ− y), and dQ(z) ∝ |w(ŝ+ z)− ŵ|dF (ŝ+ z).

Finally, we rewrite the allocation probabilities as location-specific prices, ϕ(y) =

α(ŝ − y) and ψ(z) = α(ŝ + z), so the program becomes (up to multiplication by the

normalizing factor)

max
ϕ,ψ

∫
Z

ψ(z)dQ(z)−
∫
Y

ϕ(y)dP (y)

s.t. ψ(z)− ϕ(y) ≤ c(ŝ+ z|ŝ− y) ∀y, z.

To view this program in terms of transport, suppose that the designer is a planner

who wants to support the production of a locally produced good (surplus) at locations

in Z, but discourage it at locations in Y . As a result, they wish to maximize the profit

of producers at eligible locations in Z, while minimizing the profit of producers in Y .
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The good costs nothing to produce, but can only be produced in quantity dQ(z) at

z ∈ Z and dP (y) at y ∈ Y . Suppose that demand exceeds supply at every location

and that the economy is entirely regulated so that the planner can choose the price

at which the good is sold at each location. However, producers in Y can be tempted

to transport their production to locations in Z at a cost if they can profit from it.

The designer is then naturally interested in the least costly routes between Y and Z.

Indeed, their program is actually the dual of the optimal transport problem, which

seeks to find the least costly way of transporting P to Q:

min
ζ∈M(P,Q)

∫
Y×Z

c(ŝ+ z|ŝ− y)dζ(y, z),

whereM(P,Q) is the set of joint distributions on Y ×Z with marginals P on Y and

Q on Z.

By (UID), the transportation cost c(ŝ+z|ŝ−y) is submodular on Y ×Z. Under this
condition, it is well known from optimal transport theory16 that the optimal trans-

portation plan is deterministic and assortative. It is given precisely by the matching

function m: All surplus at y is transported to location z such that ŝ+ z = m(ŝ− y).
In terms of our original problem, this implies that the binding falsification-proofness

constraints are between scores s ∈ [s∗, ŝ] and their match t = m(s). Optimal transport

theory also provides the unique (up to an additive constant) optimal price functions

ϕ and ψ in closed form.

Baseline rule under (UID). We then obtain the optimal allocation rule by follow-

ing Procedure 1:

α∗
uid(s, ŵ, r) =



0 if s < s∗

ΓuidI(ŵ, r)− 1
γ

∫ s
s∗
cs
(
m(x)|x

)
dx if s ∈ [s∗, ŝ]

1− ΓuidĪ(ŵ, r)− 1
γ

∫ s∗
s
ct
(
x|m−1(x)

)
dx if s ∈ [ŝ, s∗]

1 if s > s∗

.

Over the growth interval, the allocation rule grows at a speed of −cs
(
m(x)|x

)
for

ineligible scores x, and at a speed of ct
(
x|m−1(x)

)
for eligible scores x. By duality

in the optimal transport problem, the falsification-proofness constraint is binding

16All relevant results from optimal transport theory can be found in Galichon (2018, chapter 4).
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between matching scores, and in particular for the pair (s∗, s
∗). Therefore:

α∗
uid(s

∗, ŵ, r)− α∗
uid(s∗, ŵ, r) = c

(
s∗|s∗

)
.

Hence, the growth interval [s∗, s
∗] is uniquely determined by the boundary condition

s∗ = min
{
s ∈ [s∗(0), ŝ] : c

(
m(s)|s

)
≤ 1
}
. (B)

The corresponding Lagrange multiplier on the probability constraint is ν =W(s∗, ŵ).

In accordance with step 2 of Procedure 1, the boundary condition makes the proba-

bility constraint bind if possible, and otherwise selects the maximal growth interval

[s∗(0), s
∗(0)], with ν = 0.

Whether or not the probability constraint binds depends on the magnitude of

falsification costs, and its degree of slackness is measured by the probability gap

Γuid = 1− c(s∗|s∗). (Gap)

Then, the probability constraint is slack, and Γuid > 0, if and only if the slackness

condition c
(
s∗(0)|s∗(0)

)
< 1 is satisfied.

The probability gap must be managed according to priority. In the low-score

priority case, the probability gap is optimally withheld from the agents to ensure

α(s∗(0)) = 0, thereby preventing low-score agents from receiving an object. In the

high-score priority case, it is optimally allocated to agents to ensure α(s∗(0)) = 1,

ensuring that high-score agents receive an object with certainty. To perform this task,

we define the share index

I(ŵ, r) = 1ŵ<w̄ + r1ŵ=w̄,

that represents the share of the probability gap allocated to the agents, taking value

0 under low-score priority, and 1 under high-score priority. We refer r as the neutral

gap share. We define Ī(ŵ, r) = 1− I(ŵ, r).
Under neutral priority, the interval [s∗(0), s

∗(0)] equals the full support [s, s], re-

ducing the gap condition to c(s|s) < 1. The designer is then indifferent about the

share r ∈ [0, 1] of the probability gap that is allocated to agents, and the baseline rule

is not unique. Multiplicity therefore arises when (i) a group has neutral priority, and
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(ii) the cost for the lowest score to falsify to the highest score is less than 1:

ŵ = w̄ and c(s|s) < 1. (Mult)

Although the designer is indifferent, the choice of r plays an important role in the

solution of the general problem (P), as it allows the designer to adjust the total

mass of goods accruing to a group with neutral priority so as to satisfy the allocative

constraints.

Theorem 1 (Baseline rule under UID). If the cost function satisfies (UID), then α∗
uid

solves (BP). It is independent of r and the unique baseline rule unless (Mult) holds.

Otherwise, the set of baseline rules is
{
α∗
uid(·, w̄, r)

}
r∈[0,1].

To complete the proof of the theorem, we show in the appendix that (UID) implies

that α∗
uid satisfies the relaxed falsification-proofness constraints between scores on the

same side of the eligibility threshold ŝ.

Baseline rule under (UDD). The baseline rule under (UDD) has a similar struc-

ture but differs by its growth speed, which must be equal to the cost of a marginal

upward falsification α′(s) = ct+(s|s). Consequently, the (UDD) baseline rule is

α∗
udd(s, ŵ, r) =


0 if s < s∗

ΓuddI(ŵ, r) +
∫ s
s∗
ct+(x|x)dx if s ∈ [s∗, s

∗]

1 if s > s∗

.

The gap Γudd, the boundary condition, and the multiplicity condition have different

expressions that we provide in Appendix B.

The regimes of baseline rules. Under both classes of costs, the baseline rule

α∗ has two regimes depending on whether the probability constraint binds. It is in

the binding regime if falsification costs are high and the probability constraint binds.

Allocative distortions are then concentrated on the growth interval, with no distortion

at the boundaries of the score set: scores in [s∗, s] receive a good with certainty and

scores on [s, s∗] with null probability. It is in the slack regime if falsification costs are

low and the probability constraint is slack. In this regime, the baseline rule displays

distortions on the growth interval [s∗(0), s
∗(0)] as well as at the boundaries of the

score set. Under low-score priority, allocation is distorted at the top, α∗(s) < 1, while

it is distorted at the bottom, α∗(s) > 0, under high-score priority. Under neutral
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priority, it may be distorted indifferently at either or both boundaries, depending on

the choice of the neutral gap share r.

3.3 The shape of baseline rules

We apply our characterization to the Euclidean (Example 1) and Shifted Linear (Ex-

ample 2) families of cost functions. We show that for both families, baseline rules are

S-shaped in the (UID) case: convex over ineligible scores, and concave over eligible

ones. This is an interesting property as it boosts the probability of allocation for

eligible scores, and deflates it for ineligible ones.17 In the (UDD) case, by contrast,

the baseline rule is linear for Euclidean costs, and concave for shifted linear costs.

First, consider a Euclidean cost function C. The cost function then satisfies (UID)

if C is concave, and (UDD) if it is convex.

Proposition 1 (Baseline rules under Euclidean cost). If C is convex, the cost function
satisfies (UDD), and the baseline rule is linear in s on [s∗, s

∗], with α∗(s) = C ′(0)
(
s−

s∗
)
. If C is concave, the cost function satisfies (UID), and the baseline rule is convex

in s on [s∗, ŝ], and concave on [ŝ, s∗].

In the (UDD) case, the baseline rule is linear with slope C ′(0). This is because

the (FPC) constraints bind locally and the marginal cost of falsification is constant

for all scores and equal to C ′(0) in the Euclidean case. In the (UID) case, we show

that the baseline rule has a convex-concave S shape on its growth interval, switching

exactly at the eligibility threshold. If, in addition, the score distribution on the

growth interval is symmetric around the eligibility threshold, the baseline rule also

has a center of symmetry at the eligibility threshold. This is the case in the example

shown in Figure 2.

Next, consider a shifted linear cost function c(t, s) = κ(s)(t− s)+, which satisfies

(UID) if κ(s) is increasing, 18 and (UDD) if κ(s) is decreasing.

Proposition 2 (Baseline rules under shifted linear costs). In the shifted linear cost

model, the baseline rule is concave in the (UDD) case. In the (UID) case, it is convex

below the eligibility threshold if κ
′′
(s)

κ′(s)
≤ 2

s−s , and always concave above the eligibility

threshold.

17For shifted linear costs, convexity below the eligibility threshold requires an additional sufficient
condition on κ, whereby it cannot be too convex.

18Note that, in order to ensure that cs(t|s) < 0, we need κ′(s)/κ(s) ≤ 1/(s− s)
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Because the S shape can better approximate the first-best allocation rule, which is

a step function, Proposition 1 and Proposition 2 suggest that the optimal falsification-

proof rule may not be too costly for the designer in the (UID) case, as its shape reduces

distortions in allocative efficiency. This intuition is confirmed by our welfare analysis

in Section 4.2.

4 Baseline comparative statics and welfare

We analyze how changes in the cost function affect the baseline allocation. We then

assess the welfare impact of restricting the designer to falsification-proof mechanisms

in the (UID) case, showing that the designer’s loss in allocative efficiency is offset

by agents’ welfare gains across all scores. We explore additional comparative statics,

with respect to score distribution and returns to scale, in Appendix D.

In this section, we fix the value of the outside option ŵ and the neutral gap share

r, and therefore omit the dependence of the baseline rule α∗ on these variables in the

notations. The comparative statics of baseline allocation rules apply to the solution

of the designer’s problem when allocative constraints are absent, or nonbinding for

the group of interest. When constraints bind, changes in primitives (e.g., changes in

falsification costs or score distributions) can cause both direct and indirect effects.

This section describes direct effects. If a change in group i’s characteristics directly

increases the mass of objects allocated to that group, the resource constraint may

be violated, triggering upward adjustments to outside options and resulting in both

within-group and across-group indirect effects. We analyze these indirect effects in

Section 5.3.

Default setup. To illustrate our results, we provide examples in a default setup

defined as follows. The score distribution is uniform on [−3, 2], the worth function

is w(s) = s and the outside option is given by ŵ = 0, so the eligibility threshold is

ŝ = 0, and the example has low-score priority. The first-best allocation is to award

an object to the 40% of agents who are eligible, s ∈ [0, 2]. In this default setup, we

vary the falsification cost function.

4.1 The effect of falsification cost

Gaming ability. We parameterize the cost function by a scaling gaming ability

factor γ and perform comparative statics with respect to γ. Specifically, we consider
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parameterized cost functions

cγ(t|s) = 1

γ
c(t|s),

so higher gaming ability implies lower falsification cost. Therefore, the gap condition

holds when gaming ability is sufficiently high. Specifically, let γ̂ denote the gaming

ability threshold such that the gap condition holds for γ > γ̂. This threshold is given

by γ̂ =
∫ s∗(0)
s∗(0)

ct+(x|x)dx under (UDD), and by γ̂ = c
(
s∗(0)|s∗(0)

)
under (UID). Then

α∗ is in the binding regime if γ ≤ γ̂, and in the slack regime otherwise.

Comparative statics. We show that increasing gaming ability starting from an

initially low level (binding regime) benefits low-score agents and harms high-score

agents. If the initial level is sufficiently high (slack regime), an increase affects all

agents in the same way, benefiting them if the group has high-score priority and

hurting them under low-score priority. The results hold for both the (UID) and the

(UDD) case, and we denote the baseline allocation rule by α∗.

Proposition 3 (Effect of gaming ability). Consider increasing gaming ability from γ

to γ′ > γ, and denote the corresponding baseline rules by α∗
γ′ and α

∗
γ. Then:

(i) Binding regime / Low gaming ability: If γ ≤ γ̂, then α∗
γ(s) − α∗

γ′(s) is

single-crossing from below.

(ii) Slack regime / High gaming ability, low-score priority: If γ ≥ γ̂, and

the group has low-score priority or neutral priority with r = 0, then α∗
γ(s) ≥

α∗
γ′(s). Furthermore, the difference in probability increases in s and is equal to

0 at s∗(0).

(iii) Slack regime / High gaming ability, high-score priority: If γ ≥ γ̂, and

the group has high-score priority or neutral priority with r = 1, then α∗
γ′(s) ≥

α∗
γ(s). Furthermore, the difference in probability decreases in s and is equal to

0 at s∗(0).

This comparative statics is illustrated in Figure 2 for the default setup. The default

setup has low-score priority so it illustrates points (i) and (ii) of Proposition 3.

An externality interpretation. These comparative statics can be interpreted in

terms of externalities. We use gaming ability to parameterize the least-cost function.

Recall that least-cost agents shape the falsification-proofness constraint and, thereby,

the baseline allocation rule. Their presence imposes an externality on other agents.
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Figure 2: Effect of gaming ability on α∗. Default setup, Euclidean costs: Cd(x) =
log(1+x)
log(1+d)

, gaming ability γ = log(1 + d), binding regime if d ≤ 4.

Reducing gaming ability can be interpreted as a removal of least-cost agents, and the

resulting impact on remaining agents reflects the externality exerted by these least-

cost agents. For example, when gaming ability is low, Proposition 3 implies that the

least-cost agents exert a positive externality on low-score agents but a negative one

on high-score agents.

Discriminating on observables. As an application of Proposition 3, we examine

the effect of discriminating on observable characteristics. Suppose that there are two

groups i = 1, 2 and that agents within each group are homogeneous except for their

score, with falsification costs cγi(t|s). The groups only differ in their gaming ability,

with a higher gaming ability for the in-group (group 1) than for the out-group (group

2), γ1 > γ2. Assuming no allocative constraints or nonbinding ones, the group specific

baseline rules under ŵ = 0 solve the designer’s problem (P). We also assume low-score

priority in both groups. We consider the effect of using separate rules for each group

(discrimination), or a common rule for both.

Naively using the first-best rule, which allocates with certainty to eligible scores,

unfairly advantages the in-group, as they falsify more easily. Similarly, any common

rule that induces falsification favors the in-group over the out-group. The optimal

falsification-proof common rule is fair as equal scores are treated identically. However,

the in-group then imposes an externality on the out-group, as it has higher gaming

ability. Discriminating between groups necessarily benefits the designer who can use

more information. For the in-group, the outcome remains identical since the rule is

pinned down by their gaming ability in both cases. For the out-group, all agents
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benefit regardless of their score if γ2 > γ̂. If, instead, γ2 < γ̂, Proposition 3 implies

that discrimination leads to a steeper allocation rule, which benefits high-score agents

but harms low-score agents.

4.2 Welfare consequences of falsification proofness

Imposing falsification proofness eliminates the negative effects of falsification but

comes at the expense of the designer, who could achieve a better allocation by opti-

mizing against agents’ falsification behavior. We evaluate the welfare implications of

falsification proofness by comparing the welfare of the designer and agents under the

optimal unconstrained mechanism versus the optimal falsification-proof rule.

This comparison is feasible in the (UID) case using the characterization of the

optimal unconstrained mechanism in Perez-Richet and Skreta (2022). We therefore

restrict our framework to fit that of Perez-Richet and Skreta (2022) by assuming

a single group of agents that are homogeneous except for scores, and no binding

allocative constraints under either allocation rule. Since it is clear that we are in the

(UID) case, we drop the index and denote the baseline rule as α∗.

The unconstrained optimal mechanism. We first describe the optimal mech-

anism. For clarity, we focus on a low-score priority setting for the discussion, but

the results are general. The optimal allocation mechanism consists of a nominal allo-

cation rule α∗∗(s) paired with the designer-optimal incentive compatible falsification

strategy. The rule α∗∗ ensures that agents with scores within its growth interval are

indifferent between not falsifying and falsifying to the top of the interval.19 Designer

optimality requires agents to resolve this indifference by falsifying to the top if eligi-

ble and not falsifying otherwise. Allocative optimality thus relies on eligible agents

incurring a cost from falsification.

The optimal rule has three regimes. It is in the high-cost regime if c(s|ŝ) > 1.

Then, the rule achieves first-best by allocating objects only to eligible agents, but lower

eligible scores must falsify. The rule is in the intermediate-cost regime if c(s|ŝ) ≤ 1

but c(s|s∗(0)) > 1. Then, all eligible agents secure an object by falsifying to the top

score, while some ineligible agents must also receive objects with positive probability

to deter falsification. Finally, the rule is in the low-cost regime if c(s|s∗(0)) ≤ 1.

The designer then reduces the maximal allocation probability for groups with low-

score priority to prevent agents below s∗(0) from falsifying and obtaining objects with

19This is achieved by setting α∗∗(s) = c(s+|s−)− c(s+|s) on the growth interval [s−, s+]. See the
proof of Proposition 4 for a detailed description.

24



positive probability. Figure 3 illustrates both rules in a low-score priority setting.
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Figure 3: Default setup, cost Cd(x) = log(1+x)
log(1+d)

, gaming ability γ = log(1 + d). The
optimal rule α∗∗ is in red, the optimal falsification-proof rule α∗ in blue.

Agents’ welfare. Designer optimality requires some eligible scores to falsify. The

designer is, therefore, strictly better off under α∗∗. In Perez-Richet and Skreta (2022),

we show that not falsifying is also a best response for agents who falsify. Therefore,

the equilibrium payoff of an agent under α∗∗ equals her payoff without falsification,

α∗∗(s). Thus, comparing α∗∗(s) with α∗(s) suffices to analyze the agents’ welfare.

Figure 3 shows an example in which α∗∗ lies below α∗ everywhere, implying that

agents are better off under the falsification-proof rule. This result generalizes: agents

benefit from falsification proofness regardless of score.

Proposition 4 (Value of falsification proofness for agents). In the (UID) case, all

agents are better off under the optimal falsification proof rule: α∗(s) ≥ α∗∗(s), with a

strict inequality for a positive mass of agents.

Agents with ineligible scores do not falsify under either rule but receive objects

with higher probability under the falsification-proof rule. When α∗∗ is coupled with

the designer-optimal falsification strategy, eligible agents receive objects with a lower

probability under α∗ but avoid the falsification costs required by the optimal mech-

anism. Thus, the loss of allocative efficiency for the designer due to falsification-

proofness could be offset by the agents’ welfare gains, echoing some of the arguments

for falsification-proofness presented in the introduction. We proceed to quantify the

relative gains and losses of imposing falsification-proofness on the agents and the

designer.

Welfare in the Euclidean case. Consider a concave Euclidean cost function C.
Let A∗(C) and A∗∗(C) denote the aggregate payoff of agents under α∗ and α∗∗, respec-

tively, while D∗(C) and D∗∗(C) denote the designer’s payoff. With Euclidean costs,
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these payoffs take relatively simple forms whose explicit formulas we give in the proof

of Proposition 5. To measure the welfare effect of falsification proofness, we compare

the gain rate of the agents, G(C) = A∗(C)−A∗∗(C)
A∗(C) , with the loss rate of the designer,

L(C) = D∗∗(C)−D∗(C)
D∗(C) .

We show that, controlling for gaming ability, we can find cost functions that make

the trade-off arbitrarily favorable to falsification proofness. To understand how we

control for gaming ability, let dC be the maximum amount of falsification an agent

would rationally choose, so C(dC) = 1. This maximum amount dC is an alternative

measure of gaming ability. Hence, we control for gaming ability by holding dC constant

to some value d. The nature of the trade-off depends on whether d is above or below

a threshold d̂ = s − ŝ, which measures the size of the interval or eligible agents that

are required to falsify, and marks the frontier between the intermediate and high-cost

regimes of α∗∗.

Proposition 5. Suppose d ≥ d̂. Then, for every ε > 0, there exists a Euclidean cost

function C with dC = d, such that L(C) ≤ ε and G(C) ≥ 1/ε. If d < d̂, then, for every

ε > 0, there exists a Euclidean cost function C with dC = d, such that L(C) ≤ ε and∣∣∣G(C)− F (ŝ+d)−F (ŝ)
1−F (ŝ+d)

∣∣∣ ≤ ε.

To gain intuition about this result, it is useful to consider the role of returns to

scale in falsification. Increasing returns to scale in falsification means making the cost

function more concave, which can be done while keeping dC constant. Suppose we are

in the intermediate cost regime with low-score priority for simplicity. Making the cost

function more concave makes the unconstrained optimal rule α∗∗ more convex on the

same growth interval and therefore decreases the agents’ payoff, whereas it becomes

approximately first-best for the designer. This is because the increasingly convex rule

gives vanishingly less allocation probability away to dissuade ineligible agents from

falsifying, while eligible agents keep falsifying to the top to obtain an object. At

the same time, the optimal falsification rule α∗ approaches the designer’s first-best

because a more concave cost increases the convexity of the rule over ineligible scores

and its concavity over eligible scores, allowing the S-shaped rule to approach the first-

best step function. This result follows from Proposition D.1, which shows that the

S-shape becomes sharper as the cost function becomes more concave.

The condition d < d̂ characterizes the high-cost regime for α∗∗ in which the de-

signer achieves their first-best allocation. In this case, we cannot make the agents’

gain rate arbitrarily large. This is because the agents’ payoff does not converge to

0 under the unconstrained optimal mechanism as we make the cost function more

concave. Indeed, the unconstrained optimal rule then allocates the good for sure to
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all agents with a score above ŝ+ d < s, and only requires scores between ŝ and ŝ+ d

to falsify. Hence, while the payoff of ineligible agents and falsifying eligible agents still

converges to 0, agents with a score above ŝ+d receive the good with certainty without

falsifying, so the aggregate payoff of agents under α∗∗ converges to 1− F (ŝ+ d).
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Figure 4: Payoff trajectories. Default setup, cost Cd(x) = log(1+x)
log(1+d)

, gaming ability

γ = log(1 + d) : 0→∞. The gray zone depicts the set of attainable allocative payoffs
(without accounting for falsification costs).

Quantitative illustration. We illustrate Proposition 5 using our default setup

under different Euclidean cost functions. Figure 4 shows the payoff trajectories for

the designer and agents under both rules when varying gaming ability γ = log(1 + d)

for a family of Euclidean cost functions Cd(x) = log(1+x)
log(1+d)

. The gray zone denotes the

set of attainable allocative payoffs (that is, without accounting for falsification costs).

With infinite gaming ability, both allocation rules are to never allocate (leftmost point

in both trajectories). As γ approaches 0, both allocation rules converge to the first-

best (top-right point in both trajectories). At these extremities, there is no trade-off.

For interior gaming ability levels, we see that the optimal rule can be very costly to

agents at a moderate gain for the designer. This is especially the case at the frontier

between the high and intermediary cost regimes.

We quantify the trade-off by plotting the gain rate of agents and the loss rate of

the designer associated with a change from the optimal rule to the falsification-proof

optimal rule as in Proposition 5, for two fixed families of cost functions, with varying

gaming ability. This exercise in the default setup is shown in Figure 5. Under both

cost functions, the agents’ gain rate dominates the designer’s loss rate for all gaming

ability levels. The peak in the gain rate is reached at the frontier between the high
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Figure 5: Welfare impact of falsification proofness. Default setup, d : 0→ 6.

and intermediate-cost regions. Under the first cost function (left panel), the trade-off

is then a 144% gain for a 6.25% loss, while under the second cost function (right

panel), it is a 209% gain for a 4.4% loss. The figure also illustrates the role of returns

to scale as the gain is higher and the loss lower at every d under the more concave

cost function on the right panel.

Proposition 4 and Proposition 5 provide a theoretical foundation for falsification-

proofness. Beyond the externality and fairness arguments we invoked as motivation,

imposing falsification proofness is an effective way to balance the interests of the

designer and the agents, which can, under some configurations, dramatically benefit

the agents at a moderate cost in allocative efficiency to the designer. In our discussion

section, Section 6, we leverage these results to highlight why falsification proof systems

better align with punishment and detection tools compared to institutions relying on

falsification.

5 Solution of the designer’s problem

To solve the designer’s problem, we decompose it into a collection of group specific

within problems, that consist in optimally allocating a fixed mass of objects within

a group, and an overall across problem of optimally choosing the masses of objects

accruing to the different groups while satisfying the allocative constraints.
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Within problem. Let ρi be the mass of objects allocated to group i. Then the

corresponding within problem is

Wi(ρi) = max
αi

∫
Si

αi(s)wi(s)dFi(s) (PW )

s.t. (FPC), (PC),

µi

∫
Si

αi(s)dFi(s) = ρi, (RCW )

where the within resource constraint (RCW ) must hold with equality. Since we require

the whole mass ρi to be allocated, the within problem is feasible only if ρi ≤ µi, hence

its value function is equal to −∞ otherwise.

Across problem. A group allocation profile ρ = (ρi)i∈I satisfies the allocative

constraints if it belongs to the feasible set R = {ρ :
∑

i ρi ≤ ρ̄, ρi ≥ ϕiρ̄ (∀i)}. The

designer’s problem is then summarized by the across problem

W (F , c) = max
ρ∈R

∑
i

µiWi(ρi), (PA)

where F = (Fi)i∈I and c = (ci)i∈I denote profiles.

5.1 Optimal within group allocation

We first derive an optimal allocation rule for the within problem. To simplify notation,

we drop the group index i. Let ŵ/µ be the Lagrange multiplier on the resource

constraint, where µ is the size of the group. The Lagrangian for (PW ) is then∫
S

α(s){w(s)− ŵ}dF (s) + ŵ
ρ

µ
.

Maximizing the Lagrangian for a fixed value of the multiplier ŵ/µ is therefore equiv-

alent to solving the baseline problem with outside option ŵ. To solve the within

problem, we then need to identify the value of the Lagrange multiplier, i.e., of the

outside option, that makes (RCW ) hold. To do this, we first study how the baseline

allocation α∗(·, ŵ, r) varies with the outside option ŵ, and the neutral gap share r.

The mechanics of indirect effects. Since adjusting outside options and neutral

gap shares are the key tools to achieve particular group allocations, understanding how
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the baseline allocation reacts to such changes reveals the mechanics of how indirect

effects operate.

Proposition 6 (Effect of outside option and neutral gap share). The baseline al-

location rule α∗(s, ŵ, r) is decreasing in ŵ. It is continuous at ŵ, and independent

of r unless (Mult) holds, in which case it is strictly increasing and continuous in r.

Furthermore, it satisfies limŵ→w̄− α∗(s, ŵ, r) = α∗(s, w̄, 1) and limŵ→w̄+ α∗(s, ŵ, r) =

α∗(s, w̄, 0).

Intuitively, a higher value of the outside option should reduce the mass of allocated

objects in the baseline problem. In fact, a stronger result holds, since the effect is

uniform across all scores: for every s, the baseline allocation probability is decreasing

in ŵ. A higher value of the neutral gap share naturally increases the baseline allocation

probability for all scores when it is effective, that is, under (Mult).

Let A∗(ŵ, r) =
∫
S
α∗(s, ŵ, r)dF (s) denote the per capita mass of objects allocated

to the group under the baseline rule α∗(s, ŵ, r). Proposition 6 implies:

Corollary 1. The per capita mass of allocated objects A∗(ŵ, r), is strictly decreasing

in ŵ. It is continuous in ŵ and independent of r unless (Mult) holds, in which case

A∗(w̄, r) is strictly increasing and continuous in r, and satisfies limŵ→w̄− A∗(ŵ, r) =

A∗(w̄, 1) and limŵ→w̄+ A∗(ŵ, r) = A∗(w̄, 0).

Optimal within allocation. Returning to the within problem, the outside option

ŵ is equal to the Lagrange multiplier on the resource constraint, scaled by group size µ,

and can be interpreted as the shadow price of marginally tightening the constraint. To

ensure that (RCW ) holds, we must adjust ŵ and r so that A∗(ŵ, r) = ρ/µ. Theorem 2

shows that finding such values of ŵ and r is always possible:

Theorem 2 (Optimal within group allocation). For any 0 ≤ ρ ≤ µ, there exists

a unique outside option value ŵ(ρ) and, under (Mult), a unique neutral gap share

r(ρ), such that µA∗(ŵ(ρ), r(ρ)) = ρ. Furthermore, ŵ(ρ) is continuous, decreasing

in ρ unless (Mult) holds, in which case it is constant at w̄. The function r(ρ) is

continuous and strictly increasing. The baseline allocation rule α∗(s, ŵ(ρ), r(ρ)) is

then the unique solution to the within problem (PW ). The value function of (PW ),

W (ρ) is strictly concave at ρ unless (Mult) holds.

To see why Theorem 2 holds, note that, by assumption, w(s) is bounded. It is easy

to see that, for any ŵ below the lower bound on w(s), the unique baseline allocation

rule allocates with certainty to all scores, regardless of scores. Similarly, for any ŵ
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above the upper bound on w(s), the baseline allocation rule never allocates any object.

Hence, by varying ŵ between these bounds, we can find an outside option ŵ(ρ) such

that the baseline allocation rule satisfies the resource constraint, and therefore solves

(PW ). If ŵ(ρ) = w̄ and c(s|s) ≥ 1, we also need to adjust r to a unique value r(ρ)

so as to allocate exactly ρ objects. The allocation rule α∗(s, ŵ(ρ), r(ρ)) is then the

unique solution to the within problem.

5.2 Optimal across group allocation

We characterize the solution to the across problem and provide an algorithm to de-

termine the optimal allocation profile ρ = (ρi)i∈I .

Theorem 3 (Optimal across group allocation). The across problem (PA) admits a

solution ρ. Furthermore, ρ solves the across problem if and only if there exist a scalar

λR ≥ 0 and, for each i, a scalar λi ≥ 0, an outside option value ŵi(ρi), and a neutral

gap share ri(ρi) such that:

(i) λi(ϕiρ̄− ρi) = 0 for all i,

(ii) λR
(∑

i ρi − ρ̄
)
= 0,

(iii) ŵi(ρi) = λR − λi,

(iv) µiA
∗
i

(
ŵi(ρi), ri(ρi)

)
= ρi.

The solution ρ is unique if, for each i, ŵi(ρi) ̸= w̄i or ci(s|s) ≥ 1.

The characterization in Theorem 3 suggests the following algorithm to find a solu-

tion to the across problem. First, we compute the solutions to each within problem,

setting all outside options to 0. For these solutions, we check which constraints are

binding or violated. Next, we adjust outside options to satisfy all the previously vi-

olated constraints with equality when recomputing the corresponding solution. This

may lead to hitting additional constraints. Indeed, increasing allocation to one group

to satisfy its quota may lead to the violation of a previously slack resource constraint,

or another group’s quota constraint if the resource constraint was already binding. If

so, we adjust outside options to satisfy with equality all constraints that were binding

or violated at any previous step. Since, at any step, the set of constraints that have

required adjustment at some previous step is bounded, and necessarily increases with

each step, the process must eventually end. The allocation profile at which it ends

is a solution to the across problem. In Appendix E, we provide the formal algorithm

and show that it finds a solution to the across problem.
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5.3 Designer welfare and comparative statics

We analyze how changes in the characteristics of the groups affect the designer’s

payoff. Then, we examine the impact of such changes on the optimal allocation

profile and on the agents’ payoffs.

Designer Welfare. We show that designer welfare is decreasing in gaming ability,

and increasing with first-order stochastic dominance shifts of the score distribution.

Let cγ denote a profile of parameterized cost functions cγii = 1
γi
ci(t|s).

Proposition 7 (Properties of the designer’s value function). The value function of

the across problem, W (F , cγ), is nonincreasing in γi, and nondecreasing in Fi with

respect to the first-order stochastic dominance order.

Any increase in gaming ability tightens (FPC), thereby reducing welfare. The

effect of score distributions is more difficult to analyze, as a first-order stochastic

dominance shift in the score distribution of one group may have a non-obvious direct

effect on the baseline allocation rule for that group (see Proposition D.2), as well as

intricate indirect effects. However, an envelope theorem argument implies that we

can bypass the analysis of these complex effects and instead focus on the effect of the

score distribution on welfare while holding the allocation rule fixed. Even then, the

effect remains difficult to analyze because the surplus function wi(s)− ŵi takes both
positive and negative values on Si. Nevertheless, an argument based on the analysis

of cumulative surplus functions and the differential form of the objective function

shows that improving the score distribution in the first-order stochastic dominance

order increases the designer’s payoff.

Comparative statics: the consequences of indirect effects. Comparative stat-

ics in the general problem can have rich effects. There can be numerous scenarios

depending on initial conditions regarding gaming abilities and score distributions, the

number of groups, quotas, and the mass of objects to be allocated. Instead of listing

formal results that exhaust all these cases, we find it more effective to focus on an in-

teresting example. We choose an example that illustrates how a quota can be used to

shield a group from the indirect effects of transformations occurring in other groups.

Figure 6 and Figure 7 illustrate our example. We consider two equally sized groups,

µ1 = µ2 = 0.5, and gradually lower the gaming ability of group 1 from γ1 = 2 to

γ1 = 0.5 while keeping group 2’s gaming ability fixed at γ2 = 0.8, all corresponding to

a slack regime.. Both groups are otherwise identical, with scores uniformly distributed
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Figure 6: Group 1’s lower gaming ability hurts a low quota group (ϕ2 = 0.2). Cost
Cγi(x) = (1/γi)x/(1 + x), score distribution U(−1, 1), ϕ2 = 0.2, γ2 = 0.8, ρ = 0.2,
µ1 = µ2 = 0.5
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on [−1, 1], and a Euclidean cost function Cγ(x) = 1
γ

x
(1+x)

. The mass of objects is

ρ̄ = 0.2 which causes the resource constraint to bind for all parameters considered.

There is a quota ϕ2 of objects reserved for group 2. We consider two scenarios: in the

low-quota scenario, the quota ϕ2 = 20% is never binding, whereas in the high-quota

scenario, the quota ϕ2 = 80% is always binding.

In each case, the decrease in gaming ability of group 1 generates a direct effect

that only affects group 1, and an indirect effect that may affect both groups. For each

successive decrease in γ1, since we remain under the slack regime (see Proposition 3),

the direct effect on group 1 is to increase the allocation probability for all scores,

increasing the mass of objects allocated to this group.

First, consider the low-quota scenario, illustrated in Figure 6. As γ1 decreases, the

direct effect results in a higher mass of objects being allocated to group 1. However,

when keeping the outside option ŵ1 at its original value, the direct effect of each
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decrease in γ1 leads to a violation of the resource constraint. To compensate for this

direct effect and restore feasibility, the endogenous outside option, which is common to

both groups, adjusts upward, generating the indirect effect. This indirect effect shifts

group 2’s original allocation rule to the right, reducing the probability of receiving an

object for all scores. The final allocation rule for group 1 results from the combination

of the upward rotation due to the direct effect and the rightward shift due to the

indirect effect. It implies that high-score agents gain while low-score agents lose. The

overall effect, however, is to increase the mass of objects allocated to group 1 since

both groups bear the allocative costs of the indirect effect.

In the high-quota scenario, illustrated in Figure 7, the quota for group 2 is so high

that it always binds. To satisfy this quota and ensure that the mass of objects assigned

to group 2 remains at 80%, the outside option of group 2 must remain constant. The

direct effect of decreasing γ1 remains the same as in scenario 1. The direct effect of

each decrease in γ1 still leads to a violation of the resource constraint. To compensate

for this direct effect while maintaining the quota for group 2, group 1 must bear the

full allocative cost of the adjustment through an increase in its outside option. This

implies that the overall mass of objects allocated to group 1 remains constant, while

high-score agents still gain and low-score agents still lose.

6 Discussion

Robustness. The designer’s problem hinges on the least-cost functions, ci(t|s).
This might suggest limited robustness in our solution. We argue that, on the con-

trary, our solution satisfies different notions of robustness. For simplicity, we consider

the single-group case. Suppose that the designer considers several possible least-cost

functions, cj(t|s), with j ∈ J . A designer facing a falsification-proofness constraint

and aiming for robustness in the max-min sense must optimize against the least-cost

function c(t|s) = minj∈J cj(t|s). Indeed, if the allocation rule is not immune to falsi-

fication under c, it implies that it is not immune to falsification under at least one of

the possible cost functions. An adversarial nature would then select one of these cost

functions, leading to a −∞ payoff for the designer due to constraint violation. Thus,

finding a robust falsification-proof solution amounts to solving the problem with a

falsification cost given by C which is precisely the problem we solved.20

20Relatedly, if the designer is uncertain about the true least-cost function, they can always adopt
the allocation rule that is optimal under their worst (i.e., lowest) estimate of the cost function,
c(t|s) < c(t|s). The resulting optimal falsification-proof allocation rule is necessarily immune to
falsification under the true least-cost function. Moreover, as the error in the worst estimate van-

34



Falsification detection and punishment. One argument against the use of falsification-

proof mechanisms is that falsification should be resolved outside of the mechanism,

through detection and punishment, rather than internalized in the allocation rule.

While this is of course desirable, a first remark is that detection and punishment

rarely seem to completely eliminate falsification. Second, we note that such anti-

falsification policies are equally important under falsification-proof mechanisms as

under unconstrained optimal mechanisms. This can be seen on Figure 2 as reduc-

ing gaming ability eventually leads payoffs under both rules to converge toward the

unconstrained efficient outcome. However, our analysis of Figure 5 also suggest that

the use of unconstrained optimal mechanism (the optimum without the falsification

proofness constraint) may give pervert incentives to the designer when it comes to

investing in anti-falsification policies reducing gaming ability. Indeed, if the designer

can reduce gaming ability at a small cost, they will never invest to reduce gaming

ability further than the lowest gaming ability level that allows them to implement

their first-best outcome. As it turns out, this is exactly the gaming ability level that

makes the trade-off with the optimal falsification-proof rule most extreme. Under the

falsification-proof rule, in contrast, decreasing gaming ability never stops increasing

the designer’s payoff.

More commitment: general mechanisms. By restricting the designer to score-

based allocation rules that condition the probability of getting an object on observ-

ables only (the score produced by the agent and group characteristics), we seemingly

restrict the designer’s commitment power. The revelation principle in Myerson (1982)

implies that a designer with full commitment power chooses among direct, truthful

and obedient recommendation mechanisms that include a communication rule and an

allocation rule. The communication rule receives (truthful) reports from the agents

about their type θ and sends back (obedient) falsification recommendations. The

allocation rule conditions on reports, recommended scores and observed scores.

We can think of score-based allocation rules as the analog of tariffs in standard

screening model. Tariffs only condition on the quantity purchased, and not on reports.

Despite that, the taxation principle implies that tariffs can replicate any truthful di-

rect mechanism with deterministic allocation, and the communication phase of the

direct mechanism can therefore be bypassed. We show in Proposition 2 and Corol-

ishes, the resulting allocation rule converges to the optimal allocation rule under the true least-cost
function. More precisely, if cn < c converges uniformly to c, then the optimal falsification-proof
allocation rule under cn converges to the optimal falsification-proof rule under the true least-cost
function.
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lary 1 of Perez-Richet and Skreta (2023), that as long as score recommendations are

deterministic, a similar result applies to our framework, implying that a score-based

allocation rule is without loss of generality.

The restriction to score-based allocation rules entails a further simplification,

whereby an agent’s allocation probability is based solely on their score, rather than

the score profile of other agents, effectively treating the continuum of agents as a

single agent. This is again without loss, as we explain in Appendix F.

Less commitment: designer as a certification intermediary. In our model, we

assume the designer can commit to an allocation mechanism conditioning on score and

group. We show next that they can attain the same outcome with less commitment

power. We assume the allocation decision is delegated to a decision maker whose

preferences may be slightly misaligned with the designer’s objective. Specifically, for

the decision maker, expected worth is given by the increasing function w̃i(s) instead

of wi(s). Without loss of generality, we normalize their outside option to 0. We also

assume they face the same allocative constraints as the designer in our initial model.

They can observe the group label, but has no access to the score.

In this version of the model, the designer acts as a certification intermediary who

can design an information structure but lacks control over allocation decisions. With

reduced commitment power, the designer is a priori worse off. However, Proposition 8

demonstrates that they can replicate full commitment by employing a binary-signal

information structure, which recommends allocating with probability α∗
i (s) and re-

jecting with probability 1− α∗
i (s). Given this straightforward information structure,

the decision-maker finds it optimal to follow the recommendation.

Proposition 8. There exists ε > 0 such that α∗ is obedient whenever ||wi− w̃i||∞ < ε

for every i ∈ I.

The proof of Proposition 8 shows that α∗ is obedient whenever the designer and

decision maker preferences are sufficiently well aligned. Then, our optimal alloca-

tion rule also solves the information design problem of the designer as a certification

intermediary.

7 Related literature

We contribute to the literature on optimal allocation mechanisms with privately in-

formed agents, which can be categorized along two essential dimensions: the designer’s
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objective and the tools available for allocation targeting. In the seminal contribution

of Myerson (1981), the designer uses monetary transfers to target allocation in order

to maximize revenue. However, monetary transfers may lose their effectiveness if the

designer has a more general objective, as in Condorelli (2013), or wishes to maximize

a combination of weighted utilitarian and revenue objectives, as demonstrated in Ak-

barpour, Dworczak, and Kominers (2024). Both studies establish conditions under

which the designer optimally refrains from using transfers entirely. We consider a gen-

eral objective and exclude transfers altogether. While there may be exogenous reasons

to rule out transfers, Condorelli (2013) and Akbarpour et al. (2024) show that it is

optimal to do so if the designer’s utility from allocation is negatively correlated with

willingness to pay. By contrast to these works, we consider a setting where agents’

private information can be manipulated at a cost. Methodologically, our approach

differs from Myersonian techniques that rely on virtual surplus and work directly with

the allocation rule. Instead, we use cumulative surplus and work with the derivative

of the allocation rule to identify the growth interval.

We add to a sizable literature on non-market optimal allocation mechanisms which

study the use of alternative targeting tools in lieu of transfers. In our setting, there

are no transfers and targeting is enabled by the availability of the (possibly fal-

sified) score. Ben-Porath, Dekel, and Lipman (2019) rely on evidence disclosure.

Ben-Porath, Dekel, and Lipman (2014), Lipman (2015), Mylovanov and Zapechel-

nyuk (2017), Erlanson and Kleiner (2019), Chua, Hu, and Liu (2023), Epitropou and

Vohra (2019), and Li (2020) use ex post (costly) inspection or verification with limited

penalties. Hartline and Roughgarden (2008) and Dworczak (2022) consider money

(or utility) burning, while Patel and Urgun (2023) combine verification and money

burning. In Kattwinkel (2019), the designer has access to a private signal correlated

with the agent’s private information, while, in Kattwinkel and Knoepfle (2023), they

can additionally verify the agent’s type. In contrast, we consider costly state falsifi-

cation and impose falsification proofness. This is similar to money burning in that it

is wasteful but differs in that the utility lost through falsification is type-dependent.

We also contribute to the literature on costly screening. Frankel and Kartik (2021)

and Ball (2025) study the optimal design of linear scores under a gaming technology

that amounts to costly falsification. Landier and Plantin (2016) characterize opti-

mal tax design under costly income hiding. Kephart and Conitzer (2016), Deneckere

and Severinov (2022), and Severinov and Tam (2019) study mechanism design with

misreporting costs but focus on settings (mainly with transfers) in which falsifica-

tion proofness is without loss. Tan (2023) consider a price discrimination setting in
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which consumers can distort their data at a cost to avoid high prices. Li and Qiu

(2023) study costly screening in a multi-agent setting without transfers and iden-

tify conditions under which contests are optimal, as well as situations where random

mechanisms dominate contests. Lacker and Weinberg (1989) investigate the design of

risk-sharing contracts with costly state falsification, focusing on optimal falsification-

proof contracts. They are the first to show that this constraint may lead to a loss

of optimality without characterizing the optimal contract. We build on Perez-Richet

and Skreta (2022), where we show that optimal mechanisms necessarily induce falsi-

fication.

In practice, a score-based allocation rule can incentivize both genuine improve-

ments and score manipulations. For example, awarding green certificates to low-

emitting firms may prompt them to engage in both greenwashing and abatement. In

a related framework, Augias and Perez-Richet (2023) study the optimal design of al-

location mechanisms when agents can improve their score. In this paper, in contrast,

manipulations are purely socially wasteful.

We also add to the growing list of papers using optimal transport theory in eco-

nomics surveyed in Carlier (2012) and Galichon (2018). More recently, optimal trans-

port theory has been applied to mechanism design problems with multidimensional

private information (Daskalakis, Deckelbaum, and Tzamos, 2017; Kolesnikov, San-

domirskiy, Tsyvinski, and Zimin, 2022), information design (Arieli, Babichenko, and

Sandomirskiy, 2022; Kolotilin, Corrao, and Wolitzky, 2025; Lin and Liu, 2024; Mala-

mud and Schrimpf, 2021), and labor market sorting problems (Boerma, Tsyvinski,

and Zimin, 2021). Most of these papers rely on generalizations of duality character-

izations in transport theory.21 In contrast, our approach relies on the dual of the

optimal transport problem which we show to be equivalent to our baseline problem

in the (UID) case. This requires constructing the marginal distributions, which we

obtain by reinterpreting the cumulative surplus generated by allocation rules as prob-

ability measures over the spaces of eligible and ineligible scores. Thus, our approach

offers an original solution method that differs from Myersonian techniques in settings

with transfers, and from Lagrangian techniques in settings without transfers as in

Amador, Werning, and Angeletos (2006) and Amador and Bagwell (2022).

21For example, Lin and Liu (2024) rely on properties characterizing optimal coupling for given
marginals to establish their characterization of stable credible signals.
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A Simplifying the baseline problem

Smoothness and monotonicity of optimal allocation rules. By (FPC), feasi-

ble allocation rules inherit the regularity of the cost function, implying that they are

Lipschitz continuous. Since expected worth is monotonic in score, it is natural that

optimal allocation rules are monotonic.

Lemma A.1 (Smoothness and monotonicity). If an allocation rule satisfies (FPC),

it is Lipschitz continuous. Furthermore, if α is feasible for (BP) but not monotonic,

there exists a nondecreasing allocation rule α̃ that is feasible and strictly better for

(BP).

Proof. If α satisfies (FPC), the regularity assumption of Definition 1 directly implies

Lipschitz continuity. Next, define the nondecreasing function

α̃(s) = α−(s)1s≤ŝ+α
+(s)1s>ŝ,

where α− : [s, ŝ]→ [0, 1] is the largest nondecreasing function that is everywhere below

α on [s, ŝ], and α+ : [ŝ, s] → [0, 1] is the lowest nondecreasing function everywhere

above α on [ŝ, s].

We show that α̃ remains feasible. It obviously satisfies (PC). Since α̃ is nonde-

creasing, we only need to check (FPC) for upward falsification. Let s < t, and let

s′ = max
{
x ≥ s : α̃(x) = α̃(s)

}
, and t′ = min

{
x ≤ t : α̃(x) = α̃(t)

}
. We can assume

s ≤ s′ < t′ ≤ t, for otherwise α̃(t) = α̃(s) and the proof is done. Then,

α̃(t)− α̃(s) = α̃(t′)− α̃(s′) = α(t′)− α(s′) ≤ c(t′|s′) ≤ c(t|s),

where the first equality is by definition of s′ and t′, and the second equality is because

α̃ must coincide with α wherever it is not flat, and therefore also at the end of every

flat interval. The first inequality is due to falsification proofness of α, and the last

inequality to cost monotonicity.

Eligible scores are more likely, and ineligible score less likely to get an object

under α̃ than under α. Hence, α̃ is better than α for (BP). Furthermore, if α is not

monotonic, there must exist an interval of scores for which α and α̃ do not coincide.

Since F has full support, α̃ is therefore strictly better than α.

By the fundamental theorem of calculus, we can then rewrite allocation rules
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according to either of the following integral decompositions

α(s) = α +

∫ s

s

α′(z)dz (ID)

= α−
∫ s

s

α′(z)dz, (ID)

where α = α(s) and α = α(s). The derivative α′ exists almost everywhere and is

bounded between 0 and Λ. We can therefore rewrite the baseline problem as an

optimization problem over the bounded function α′(·) and either of the scalars α or

α, instead of optimizing directly on α. We call the resulting problem a differential

program.

Furthermore, downward falsification-proofness constraints are satisfied by mono-

tonicity, so we only retain upward constraints. Since allocation rules are bounded,

monotonicity also implies the existence of a growth interval, to the left of which the

allocation probability is null, and to the right of which it is equal to 1. To solve

the baseline problem, we first need to characterize possible growth intervals. The

differential program allows us to do that.

When using (ID), and constructing the allocation rule from the left, locally in-

creasing the allocation probability at z by α′(z)dz yields a marginal gain equal to the

upward cumulative surplusW+(z, ŵ). Indeed, replacing α with (ID) in the designer’s

objective, and integrating by parts, yields the differential objective function22

(w̄ − ŵ)α +

∫ s

s

α′(z)W+(z, ŵ)dz. (DOF)

When using (ID), locally decreasing the allocation probability at z by α′(z)dz yields

a marginal gain equal to the downward cumulative surplus W−(z, ŵ). Rewriting the

designer’s objective function with (ID) yields

(w̄ − ŵ)α +

∫ s

s

α′(z)W−(z, ŵ)dz. (DOF)

(DOF) implies that it is optimal to set α = 1 in high-score priority groups, and (DOF)

implies that it is optimal to set α = 0 in low-score priority groups. Under neutral

priority, either choice works.

22This reformulation is mathematically analogous to obtaining the seller’s revenue in terms of the
product of the allocation rule and buyer’s virtual valuations in standard mechanism design settings
with transfers.
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We can then write a common differential program for all priorities using the cu-

mulative surplus functionW . Note that we add a differential monotonicity constraint

(DMC) to the program. Although not necessary, it helps the exposition and is without

loss of generality by Lemma A.1.

Lemma A.2 (Differential program). In (BP), it is optimal to set α = 0 if the group

has low-score priority, and α = 1 if the group has high-score priority. Under neutral

priority, either choice works. In all cases, the baseline program (BP) is equivalent to

the differential program

max
α′

∫ s

s

α′(z)W(z, ŵ)dz (DBP)

s.t.

∫ s

s

α′(z)dz ≤ 1 (DPC)∫ t

s

α′(z)dz ≤ c(t|s), ∀s < t (DFPC)

0 ≤ α′(s), ∀s. (DMC)

Proof. The objective functions (DOF) and (DOF) are obtained by integration by

parts after using (ID) and (ID). To complete the argument, we also rewrite the

constraints in the same way. The differential version of the falsification-proofness

constraint (DFPC) is immediate. We can add the differential monotonicity constraint

(DMC) to the program without loss of generality by Lemma A.1. Given (DMC) the

probability constraint can be written equivalently as:

0 ≤ α, and α +

∫ s

s

α′(x)dx ≤ 1,

or

α ≤ 1, and α−
∫ s

s

α′(x)dx ≥ 0.

Considering the program written as an optimization program on (α, α′), setting α = 0

in the low-score priority case maximizes the objective function (DOF), and relaxes

the probability constraint on α′. It is therefore optimal. Similarly, considering the

program as an optimization program on (α, α′), setting α = 1 both maximizes (DOF)

and relaxes the probability constraint on α′. Having simplified the program in this

way results in the differential program of the lemma in each case.
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Probability constraint and growth interval. The probability constraint (DPC)

bounds the total growth of the allocation rule, and therefore determines the growth

interval. Let ν ≥ 0 be the Lagrange multiplier on this constraint. The Lagrangian of

the differential program is then

L(α, ν) =
∫ s

s

α′(z)
{
W(z, ŵ)− ν

}
dz + ν.

By Lemma 1, (iii), maximizing this Lagrangian under (DMC) implies setting α′(s) = 0

for almost every s outside of the growth interval
[
s∗(ν), s

∗(ν)
]
. Growth intervals are

therefore (ZAS) intervals and are contained within the maximal interval [s∗(0), s
∗(0)].

Lemma A.3 (Lagrange necessary and sufficiency result for (BP)). A nondecreasing

and Lipschitz allocation rule α̂ solves (BP) if and only if there exists a Lagrange

multiplier ν ≥ 0 such that:

(i) α̂(s) = α̂
(
s∗(ν)

)
for every s ≤ s∗(ν), and α̂(s) = α̂

(
s∗(ν)

)
for every s ≥ s∗(ν),

(ii) α̂(t)− α̂(s) ≤ c(t|s) for every s∗(ν) ≤ s < t ≤ s∗(ν),

(iii) If w̄ ≤ ŵ, α̂
(
s∗(ν)

)
= 0 and ν

(
1− α̂

(
s∗(ν)

))
= 0,

(iv) If w̄ ≥ ŵ, α̂
(
s∗(ν)

)
= 1 and να̂

(
s∗(ν)

)
= 0,

(v) For every nondecreasing Lipschitz allocation rule α that satisfies (i) and (ii),∫ s∗(ν)

s∗(ν)

{
w(s)− ŵ

}
α̂(s)dF (s) ≥

∫ s∗(ν)

s∗(ν)

{
w(s)− ŵ

}
α(s)dF (s).

Proof. We proceed in two steps. The first step is a standard Lagrangian necessity

and sufficiency theorem. The second step ensures the conditions of the lemma are

equivalent to the Lagrangian conditions. In this proof, we say that an allocation rule

α is feasible if it is nondecreasing, Λ-Lipschitz, satisfies (FPC), α = 0 under low-score

priority, and α = 1 under high-score priority. It is immediate to verify that the set of

such feasible allocation rules, which we denote by A, is convex.

Step 1: A feasible allocation rule α̂ solves the within problem if and only if there

exists ν ≥ 0 such that (a) ν = 0 or α̂ − α̂ = 1, and (b) L(α̂, ν) ≥ L(α, ν) for every

feasible allocation rule α.
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⇐ If ν = 0, the conclusion is immediate. Suppose instead ν > 0. Then (a)

implies
∫
S
α̂′(z)dz = 1. Hence, for any feasible α that satisfies (DPC),∫

S

α̂′(z)W(z, ŵ)dz = L(α̂, ν) ≥ L(α, ν) ≥
∫
S

α′(z)W(z, ŵ)dz,

where the last inequality is implied by ν > 0 and
∫
S
α′(z)dz ≤ 1.

⇒ For every b ≥ 0, consider the program where we replace the probability

constraint (DPC) by the constraint g(α) ≤ b where g(α) =
∫
S
α′(z)dz. Let its value

be

h(b) = max
α∈A

Ω(α) s.t.

∫
S

α′(z)dz ≤ b,

where Ω(α) =
∫
S
α′(z)W(z, ŵ)dz. Since the objective Ω(·) and the constraint g(·) are

both linear in α′, and A is convex, h(b) is a concave function. It is also obviously

nondecreasing. Let ν ≥ 0 be the left-derivative of h at b = 1, which exists by concavity

and is nonnegative by monotonicity.

By assumption, h(1) = Ω(α̂). If g(α̂) = 1, we also have Ω(α̂) = L(α̂, ν). Oth-

erwise, we must have g(α̂) < 1. But then α̂ must also solve the program for any

b ∈ [g(α̂), 1], implying h is constant on this interval, and ν = 0. Then again,

Ω(α̂) = L(α̂, ν). For all α ∈ A, we have Ω(α) ≤ h
(
g(α)

)
by definition of h, and

h
(
g(α)

)
≤ h(1)+ν

(
g(α)−1

)
. Hence, L(α, ν) = Ω(α)−ν

(
g(α)−1

)
≤ h(1) = Ω(α̂) =

L(α̂, ν).

Step 2: A nondecreasing and Lipschitz allocation rule α satisfies (i)-(v) for some

ν ≥ 0 if and only if it is feasible and satisfies (a) and (b).

⇒ It is easy to see (i), (iii) and (iv) imply (a), and α̂ = 0 under low-score priority

and α̂ = 1 under high-score priority. Next, we show that (i) and (ii) imply α̂ satisfies

(FPC). Let s < t, and define s′ = max{s∗(ν), s} and t′ = min{s∗(ν), t}. Then

α̂(t)− α̂(s) = α̂(t′)− α̂(s′) ≤ c(t′|s′) ≤ c(t|s),

where the first equality is from (i), the first inequality from (ii), and the last inequality

by cost monotonicity. Hence α̂ is feasible and satisfies (a).

Suppose α is feasible. Then, let α̃(s) =
[
α(s) + a

]1
0
, where we use the notation

[z]10 = z 10≤z≤1+1z>1, for any z, and

a = −α
(
s∗(ν)

)
1w̄<ŵ+

(
1− α

(
s∗(ν)

))
1w̄≥ŵ .
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Then α̃ satisfies (i) and (ii), and (b) follows from:

L(α̂, ν) =
∫
S

α̂′(z)W(z, ŵ)dz (by (i), and (a))

= ν
(
α̂− α̂

)
+

∫ s∗(ν)

s∗(ν)

{w(s)− ŵ}α̂(s)dF (s)

(by integration by parts and Lemma 1)

= ν +

∫ s∗(ν)

s∗(ν)

{w(s)− ŵ}α̂(s)dF (s) (by (a))

≥ ν +

∫ s∗(ν)

s∗(ν)

{w(s)− ŵ}α̃(s)dF (s) (by (v))

= ν +

∫ s∗(ν)

s∗(ν)

{w(s)− ŵ}α(s)dF (s) + a

∫ s∗(ν)

s∗(ν)

{w(s)− ŵ}dF (s)︸ ︷︷ ︸
=0

(by (ZAS))

= ν +

∫ s∗(ν)

s∗(ν)

α′(z)W(z, ŵ)dz − ν
{
α
(
s∗(ν)

)
− α

(
s∗(ν)

)}
(by integration by parts)

= ν +

∫ s∗(ν)

s∗(ν)

α′(z)
[
W(z, ŵ)− ν

]
dz

≥ ν +

∫
S

α′(z)
[
W(z, ŵ)− ν

]
dz = L(α, ν),

(as W(z, ŵ) < ν for z /∈ [s∗(ν), s
∗(ν)])

where we use the relation W
(
s∗(ν), ŵ

)
=W

(
s∗(ν), ŵ

)
= ν from Lemma 1.

⇐ Feasibility directly implies (ii) as α̂ must satisfy (FPC). By Lemma 1, max-

imizing L(α, ν) implies setting α′(s) to 0 for almost every s outside of [s∗(ν), s
∗(ν)]

which implies (i). Feasibility and (i), then imply the first equality in (iii) and (iv). If

ν = 0, the second equality is automatically satisfied, otherwise, it is satisfied by (a).

Consider any nondecreasing and Lipschitz allocation rule α that satisfies (i) and (ii).
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Then it is feasible, and∫ s∗(ν)

s∗(ν)

α(s){w(s)− ŵ}dF (s) =
∫ s∗(ν)

s∗(ν)

α′(z)W(z, ŵ)dz − ν
{
α
(
s∗(ν)

)
− α

(
s∗(ν)

}
(by integration by parts)

=

∫ s∗(ν)

s∗(ν)

α′(z)
[
W(z, ŵ)− ν

]
dz

=

∫
S

α′(z)
[
W(z, ŵ)− ν

]
dz (by (i))

= L(α, ν)− ν

≤ L(α̂, ν)− ν (by (b))

=

∫
S

α̂′(z)
[
W(z, ŵ)− ν

]
dz

=

∫ s∗(ν)

s∗(ν)

α̂′(z)
[
W(z, ŵ)− ν

]
dz (by (i))

=

∫ s∗(ν)

s∗(ν)

α̂′(z)W(z, ŵ)dz − ν
{
α̂
(
s∗(ν)

)
− α̂

(
s∗(ν))

}
=

∫ s∗(ν)

s∗(ν)

α̂(s){w(s)− ŵ}dF (s)

(by integration by parts)

B Baseline rule: upward decreasing differences

Under (UDD), the falsification-proofness constraint can be replaced by the condition

that not falsifying solves the first-order condition of the agent’s problem maxt α(t)−
c(t|s), that is

α′(s) ≤ ct+(s|s),

where ct+(s|s) is the right-derivative of c with respect to target t evaluated at t = s.

Integrating by parts the objective function of the simplified program, we rewrite it in

the following differential form:23

max
α′(s)≤ct+ (s|s)

∫ s∗

s∗

(
W(s, ŵ)− ν

)
α′(s)ds,

23See Appendix A for details.
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where ν =W(s∗, ŵ) =W(s∗, ŵ). SinceW(s, ŵ)− ν > 0 on the interior of [s∗, s
∗], the

only solution is to set α′(s) = ct+(s|s) for almost every s.

Following step 2 of Procedure 1, the growth interval [s∗, s
∗] of the baseline rule is

pinned down by the boundary condition

s∗ = min

{
s ∈ [s∗(0), ŝ] :

∫ m(s)

s

ct+(x|x)dx ≤ 1

}
. (B)

As in the (UID) case, we can define the probability gap in the probability constraint

as

Γudd = 1−
∫ s∗

s∗

ct+(x|x)dx. (Gap)

Given the boundary condition (B), the probability constraint is slack, and the gap

positive Γudd > 0, if and only if the slackness condition
∫ s∗(0)
s∗(0)

ct+(x|x)dx < 1 is

satisfied. When it holds, there is a gap Γudd > 0 between the total growth of the

baseline rule and its upper bound (equal to 1).

As in the (UID) case, it is optimally withheld in the low-score priority case and op-

timally allocated to agents in the high-score priority case. The index I(ŵ, r) performs

this task.

In the (UDD), multiplicity arises under the condition:

ŵ = w̄ and

∫ s

s

ct+(x|x)dx < 1. (Mult)

Note that, while we use the same labels as in the (UID) case for the gap equation

(Gap), and the multiplicity condition (Mult), they have a different definition under

(UDD).

Theorem B.1 (Baseline allocation rule under (UDD)). If the cost function satisfies

(UID), then α∗
udd solves (BP). It is independent of r and the unique baseline rule

unless (Mult) holds. Otherwise, the set of baseline rules is
{
α∗
udd(·, w̄, r)

}
r∈[0,1].

Proof. To keep notations simple, we only indicate the dependence of α∗
udd on ŵ, r

when it is useful for the argument. Again, we only need to check the conditions of

Lemma A.3 are satisfied. Picking ν =W(s∗, ŵ), it is clear that (i) holds. For (ii), let
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s∗ ≤ s < t ≤ s∗, then

α∗
udd(t)− α∗

udd(s) =

∫ t

s

ct+(x|x)dx

≤
∫ t

s

ct(x|s)dx (by (UDD))

= c(t|s).

This also shows that the first-order approach is valid. Furthermore, the differential

program solved by α∗
udd is obtained from the program in (v) by using integration by

parts on the objective function. Therefore, (v) holds. (iii) and (iv) are immediate to

check.

For uniqueness, note that while there may be several values of the Lagrange mul-

tiplier ν that work if ct+(x|x) is equal to 0 both in the neighborhoods of s∗ and s∗,

the corresponding optimal allocation rules for the program would be identical for all

such values, so uniqueness of the solution to the differential program is granted when∫ s
s
ct+(x|x)dx ≥ 1 or ŵ ̸= w̄. In the remaining case, if (Mult) holds, the designer is

indifferent across allocation rules α∗
udd(s, ŵ, r) for any r ∈ [0, 1]. The argument is the

same as in the (UID) case.

Note that the baseline rule α∗
udd is flat if ct+(x|x) = 0 for almost every x, that is,

if a marginal falsification is uniformly costless. Then the optimal rule is to allocate

to all scores under high-score priority, and to never allocate under low-score priority.

This is, for example, the case with the quadratic cost function c(t|s) = (t− s)2.

C Proofs

Proof of Lemma 1. By strict monotonicity of w, w(s) − ŵ and s − ŝ have the same

sign implying both W+ and W− are increasing on [s, ŝ] and decreasing on [ŝ, s], and

therefore single-peaked at ŝ, proving (i). The existence of s∗(ν) and s∗(ν) is then

ensured by continuity of both W+ and W−, and the fact that both functions take

weakly negative values at both ends of the score interval. Then (ii), (iii) and (iv) are

direct consequences of single-peakedness and continuity. For (v), note that, in the

low-score priority, W(s, ŵ) = W+(s, ŵ) = 0, while, in the high-score priority case,

W(s, ŵ) =W−(s, ŵ) = 0.

Proof of Theorem 1. To keep notations simple, we only indicate the dependence of

α∗
uid on ŵ, r when it is useful for the argument. We check that the conditions of
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Lemma A.3 are satisfied. We pick the multiplier ν =W(s∗, ŵ) ≥ 0. Then α∗
uid clearly

satisfies (i). To see that it satisfies (iii) and (iv), note that α∗
uid(s

∗)−α∗
uid(s∗) = c(s∗|s∗)

since the falsification-proofness constraint is binding for (s∗, s
∗). Hence, by (B), either

α∗
uid(s

∗)−α∗
uid(s∗) is equal to 1 and the probability constraint is binding, or it is strictly

less than 1, and then ν = 0 and (s∗, s
∗) = (s∗(0), s

∗(0)).

By the optimal transport connection established in Section 3.2, α∗
uid solves the

relaxed program of that section. To show that it satisfies (v), we need to show

that it satisfies the falsification-proofness constraint in (ii) for any pair s, t such that

s, t ∈ [s∗, ŝ] or s, t ∈ [ŝ, s∗]. Take, for example, the first case. Then

α∗
uid(t)− α∗

uid(s) = −
∫ t

s

cs
(
m(x)|x)dx

≤ −
∫ t

s

cs(m(t)|x)dx (by (UID))

= c
(
m(t)|s

)
− c
(
m(t)|t

)
≤ c(t|s)− c(t|t) = c(t|s). (by (UID))

The argument is similar in the second case.

For uniqueness, first note that c(s∗(ν)|s∗(ν)) is increasing in ν so there is a single

value of the Lagrange multiplier that satisfies (B), that is a single value of the Lagrange

multiplier such that the necessary and sufficient conditions of Lemma A.3 are satisfied.

Then for this ν and the corresponding bounds (s∗, s
∗), the solution to the optimal

transport problem is uniquely determined up to a constant. However, this constant

is uniquely determined either by the probability constraint if it binds, that is, if

c(s∗|s∗) = 1, or by the requirement that α∗
uid(s∗) = 0 under low-score priority, and

α∗
uid(s

∗) = 1 under high-score priority. The only situation in which uniqueness fails

is if we are in the neutral priority case where w̄ = ŵ, and the probability constraint

is slack. In this case, note that (s∗, s
∗) = (s∗(0), s

∗(0)) = (s, s). Hence, for the

probability constraint not to bind, it must be the case that c(s|s) < 1. The designer

is then indifferent across all allocation rules α∗
uid(s, w̄, r) for any r ∈ [0, 1]. Indeed,

for r′ > r, we have α∗
uid(s, w̄, r

′) − α∗
uid(s, w̄, r) = (r′ − r)Γuid so the difference in the

designer’s payoff is

(r′ − r)Γuid
∫ s

s

{w(s)− ŵ}dF (s) = (r′ − r)Γuid(w̄ − ŵ) = 0.
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Proof of Proposition 1. Let α denote the baseline rule. Using the formulas from The-

orem 1 and Theorem B.1, we get α′(s) = C ′(0) in the (UDD) case. In the (UID) case,

for s ∈ [s∗, ŝ], α
′(s) = C ′

(
m(s) − s

)
increases in s by concavity of C and since m(s)

is decreasing. If instead s ∈ [ŝ, s∗], then α′(s) = C ′
(
s − m−1(s)

)
decreases in s by

concavity of C and since m−1(s) is decreasing.

Proof of Proposition 2. Let α denote the baseline rule. For the shifted linear cost

family, we have ct(t|s) = κ(s), cs(t|s) = −κ(s) + (t − s)κ′(s) and cts(t|s) = κ′(s). If

κ′(s) ≤ 0, we are in the (UDD) case. On the growth interval, α′(s) = ct(s|s) = κ(s)

and α′′(s) = κ′(s) ≤ 0 so the baseline rule is concave along the growth interval.

If κ′(s) ≥ 0, we are in the (UID) case. For ineligible scores on the growth interval,

α′(s) = −cs(m(s)|s) = κ(s)− (m(s)− s)κ′(s),

and

α′′(s) = (2−m′(s))κ′(s)− (m(s)− s)κ′′
(s).

Note that, for the linear shifted cost to satisfy our basic assumptions on costs, we

must have cs(t|s) = −κ(s) + (t − s)κ′(s) < 0 for every t, that is, κ′(s)
κ(s)
≤ 1

s−s . Since

m′(s) < 0, and κ′(s) ≥ 0, we have α′′(s) ≥ 2κ′(s)− (m(s)− s)κ′′
(s). Then α′′(s) ≥ 0,

whenever
κ′′(s)

κ′(s)
≤ 2

s− s
.

For eligible scores, α′(s) = ct
(
s|m−1(s)

)
= κ(m−1(s)) and

α′′(s) =
1

m′
(
m−1(s)

)κ′(m−1(s)) ≤ 0

since m is decreasing.

Proof of Proposition 3. Recall that the matching function m is decreasing. This im-

plies that the growth interval increases in γ for the inclusion order. It increases strictly

for γ < γ̂, and is equal to [s∗(0), s
∗(0)] for γ ≥ γ̂.

Consider first γ < γ′ < γ̂, and define the function δ(s) = α∗
γ′(s) − α∗

γ(s). We

denote by s∗[γ] and s
∗[γ] the optimal matching pair under γ, where we use brackets

to distinguish them from the functions s∗(ν), s
∗(ν).

δ(s) is equal to 0 for s ≤ s∗[γ
′] and s ≥ s∗[γ′]. It is equal to α∗

γ′(s), and therefore

increasing and positive, on
[
s∗[γ

′], s∗[γ]
]
. It is equal to α∗

γ′(s) − 1, and therefore

increasing and negative, on
[
s∗[γ], s∗[γ′]

]
.
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If the cost function satisfies (UID), the derivative of δ is

δ′(s) =

(
1

γ
− 1

γ′

)
cs
(
m(s)|s

)
< 0

on
[
s∗[γ], ŝ

]
, and

δ′(s) =

(
1

γ′
− 1

γ

)
ct
(
m(s)|s

)
< 0

on
[
ŝ, s∗[γ]

]
.

If, instead, the cost function satisfies (UDD), its derivative is

δ′(s) =

(
1

γ′
− 1

γ

)
ct+
(
s|s
)
< 0

on
[
s∗[γ], s

∗[γ]
]
.

Hence, δ increases from 0, then decreases and becomes negative, and increases

back to 0, which proves point (i) of the proposition.

Next, suppose γ′ > γ > γ̂. In the low-score priority case, the growth interval

under both γ and γ′ is [s∗(0), s]. The computation of δ′ in this interval is the same as

above, implying now that δ is decreasing on [s∗(0), s]. Since δ
(
s∗(0)

)
= 0, this proves

point (ii).

In the high-score priority case, the growth interval under both γ and γ′ is [s, s∗(0)].

The computation of δ′ in this interval is the same as above, implying now that δ is

decreasing on [s, s∗(0)]. Since δ
(
s∗(0)

)
= 0, this proves point (iii).

Proof of Proposition 4. In Perez-Richet and Skreta (2022), we derive optimal alloca-

tion rules without a falsification proofness constraint for a cost function that satisfies

the following upper triangular inequality : for all s ≤ m ≤ t, c(t|m) + c(m|s) ≥ c(t|s).
We also show in Perez-Richet and Skreta (2022) that this triangular inequality is im-

plied by (UID). Therefore, in the (UID) case, the (unconstrained) optimal allocation

rule is

α∗∗(s, ŵ, r) =


Γ∗∗I(ŵ, r) if s < s−

Γ∗∗I(ŵ, r) + c(s+|s−)− c(s+|s) if s ∈ [s−, s+]

Γ∗∗I(ŵ, r) + c(s+|s−) if s > s+

,

where I(ŵ, r) is defined as in Appendix B, and the probability gap is

Γ∗∗ = 1− c(s+|s−).
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The magnitude of falsification costs, together with score priority, determines the

growth interval [s−, s+]. The relevant cost thresholds are defined as ĉ = c(s|ŝ) and

c = c
(
s|s∗(0)

)
. By cost monotonicity, c > ĉ.

The unconstrained optimal rule has three regimes:

• The low-cost regime, if c < 1: then, the growth interval is [s−, s+] = [s∗(0), s],

the probability constraint is slack, and the gap Γ∗∗ > 0 is allocated according

to priority by I(ŵ, r).

• The intermediate-cost regime, if c ≥ 1 > ĉ: then, s+ = s and s− solves c(s|s−) =
1. The probability constraint is binding.

• The high-cost regime, if ĉ ≥ 1: then, s− = ŝ and s+ solves c(s+|ŝ) = 1. The

probability constraint is binding.

First, note that, under the low and intermediate-cost regimes, for every eligible

score s that lies in the growth interval of both rules, α∗ and α∗∗,

dα∗∗

ds
(s) = −cs

(
s|s
)
≤ −cs

(
m(s)|s

)
=
dα∗

ds
(s), (1)

since, by (UID), cs(t|s) is nondecreasing in t.

We first treat the low-score priority and neutral priority cases together:

Low-cost regime. Both rules have the same growth interval [s∗(0), s
∗(0)] with

s∗(0) = s. Furthermore, α∗(s) = α∗∗(s) = I(ŵ, r)Γ∗∗ = I(ŵ, r)Γ for s ≤ s∗(0). Then,

by (1), α∗(s) > α∗∗(s) for all s ∈ (s∗(0), ŝ). For s ≥ ŝ,

α∗(s) = α∗(m−1(s)
)
+ c
(
s|m−1(s)

)
≥ α∗∗(m−1(s)

)
+ c
(
s|m−1(s)

)
= I(ŵ, r)Γ∗∗ + c

(
s|s∗(0)

)
− c(s|m−1(s)

)
+ c
(
s|m−1(s)

)
≥ I(ŵ, r)Γ∗∗ + c

(
s|s∗(0)

)
− c(s|s

)
= α∗∗(s),

where the first equality holds because (FPC) binds between m−1(s) and s, the first

inequality holds since m−1(s) is ineligible, and the second inequality is due to the

upper triangular inequality.

Intermediate-cost regime. The growth intervals satisfy s∗ ≤ s− ≤ ŝ < s∗ ≤ s+ = s,

and α∗(s∗) = 0, while α∗∗(s−) = 0. For all s ∈ (s−, ŝ), (1) holds, implying α∗(s) ≥
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α∗∗(s). For s ∈ (ŝ, s∗), using the same ideas as above,

α∗(s) = α∗(m−1(s)
)
+ c
(
s|m−1(s)

)
≥ α∗∗(m−1(s)

)
+ c
(
s|m−1(s)

)
≥ 1− c(s|m−1(s)

)
+ c
(
s|m−1(s)

)
≥ 1− c(s|s

)
= α∗∗(s).

Finally, for s ≥ s∗, α∗(s) = 1 ≥ α∗∗(s).

High-cost regime. The growth intervals satisfy s∗ < ŝ = s− < s∗ < s+ ≤ s.

Therefore, α∗(s) > α∗∗(s) = 0 for s ∈ [s∗, ŝ]. Then, for s ≥ ŝ,

α∗(s) = α∗(m−1(s)
)
+ c
(
s|m−1(s)

)
≥ c
(
s|m−1(s)

)
≥ c
(
s|ŝ
)

≥ c(s+|ŝ
)
− c(s+|s

)
= 1− c(s+|s

)
= α∗∗(s),

where the second inequality is by cost monotonicity, the third by the triangular in-

equality, and the remaining equality is by definition of the growth intervals in the

hight-cost regime.

Next, we treat the high-score priority case.

Low-cost regime. The growth interval is [s∗(0), s
∗(0)] = [s, s∗(0)] for α∗, and [s, s]

for α∗∗. Furthermore,

α∗(s) = 1− c
(
s∗(0)|s

)
> 1− c(s|s) = α∗∗(s).

Hence, α∗(s) > α∗∗(s) for all s ∈ [s, ŝ] holds by (1). For s ∈
(
ŝ, s∗(0)

)
, using the same

ideas as above

α∗(s) = α∗(m−1(s)
)
+ c
(
s|m−1(s)

)
≥ α∗∗(m−1(s)

)
+ c
(
s|m−1(s)

)
≥ 1− c(s|m−1(s)

)
+ c
(
s|m−1(s)

)
≥ 1− c(s|s

)
= α∗∗(s).

For s ≥ s∗(0), α∗(s) = 1 ≥ α∗∗(s).

Intermediate-cost regime. There are two possible cases. If c(s∗(0)|s∗(0)) > 1, the
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argument is word for word as in the low-score and neutral priority case. Suppose that

c(s∗(0)|s∗(0)) < 1. Then the growth interval of α∗ is [s∗(0), s
∗(0)] with s∗(0) = s,

s∗(0) ≤ s, and α∗(s) = Γ. The growth interval of α∗∗ is such that s− > s, and

s+ = s. Therefore, α∗(s) > α∗∗(s) for all s ≤ s−. For s ∈ (s−, ŝ), (1) holds, therefore

α∗(s) > α∗∗(s). For s ∈
(
ŝ, s∗(0)

)
, using the same ideas as above

α∗(s) = α∗(m−1(s)
)
+ c
(
s|m−1(s)

)
≥ α∗∗(m−1(s)

)
+ c
(
s|m−1(s)

)
≥ 1− c(s|m−1(s)

)
+ c
(
s|m−1(s)

)
≥ 1− c(s|s

)
= α∗∗(s).

Finally, for s ≥ s∗(0), α∗(s) = 1 ≥ α∗∗(s).

High-cost regime. Then, the proof is exactly as under low-score or neutral priority.

Proof of Proposition 5. We start by establishing general payoff formulas for a concave

Euclidean cost function C with dC = d. Let d̄ = s− s, and d∗(0) = s∗(0)− s∗(0). The
length of the growth interval of α∗ is equal to ℓ∗C = min{d, d∗(0)}. For α∗∗, it is

ℓ∗∗C = ℓ∗C 1w̄≤ŵ+min{d, d̄}1w̄>ŵ .

In the low and intermediate-cost regimes, all eligible scores falsify, while in the high-

cost regime, the scores that falsify are those on the growth interval, which is then a

subset of eligible scores. Therefore, we can write the size of the interval of falsifying

scores as fC = min{ℓ∗∗C , d̂} = min{ℓ∗C, d̂}, where recall that d̂ = s− ŝ is the size of the

interval or eligible agents. Finally, let p∗C = C(ℓ∗C) and p∗∗C = C(ℓ∗∗C ).

The rule α∗∗ is in the low-cost regime if d ≥ d̄1w̄>ŵ+d
∗(0)1w̄≤ŵ, in the high-cost

regime if d < d̂, and in the intermediate-cost regime otherwise.

The rule α∗ is in its binding regime if d ≤ d∗(0) and in its slack regime otherwise.

Note that the slack regime corresponds to the low-cost regime of α∗ under low or

neutral-score priority, whereas the transition between the slack and binding regimes

of α∗ is inside the intermediate-cost regime of α∗∗ under high-score priority.

We start by defining three adjunct functions. We let ϕ(x) = −m−1(x) for x ∈
[ŝ, s∗(0)]. Next, ψ denotes the inverse of the strictly increasing function x→ x+ϕ(x).

Intuitively, to a certain length of a (ZAS) interval, it associates its upper bound.
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Finally, for x ∈ [ŝ, s∗(0)],

ξ(x) =
F (x) + ϕ′(x)F

(
−ϕ(x)

)
1 + ϕ′(x)

.

Note that, by the implicit function theorem and the (ZAS) equation, ϕ′ exists

almost everywhere and satisfies

ϕ′(x) = −
(
w(x)− ŵ

)
f(x)(

w
(
−ϕ(x)

)
− ŵ

)
f
(
−ϕ(x)

) .
We first compute the aggregate payoff of agents under α∗. To do this, we start by

computing the aggregate payoff of agents with a score in the growth interval.∫ s∗

s∗

α∗(x)dF (x) = C(s∗ − s∗)F (s∗)−
∫ ŝ

s∗

F (x)dα∗(x)−
∫ s∗

ŝ

F (x)dα∗(x)

= C(s∗ − s∗)F (s∗)−
∫ ŝ

s∗

C ′
(
m(y)− y

)
F (y)dy

−
∫ s∗

ŝ

C ′
(
x+ ϕ(x)

)
F (x)dx

= C(s∗ − s∗)F (s∗)−
∫ s∗

ŝ

C ′
(
x+ ϕ(x)

){
ϕ′(x)F

(
−ϕ(x)

)
+ F (x)

}
dx

= C(s∗ − s∗)F (s∗)−
∫ s∗

ŝ

C ′
(
x+ ϕ(x)

)(
1 + ϕ′(x)

)
ξ(x)dx

= C(s∗ − s∗)F (s∗)−
∫ s∗−s∗

0

C ′(y)ξ
(
ψ(y)

)
dx

where the first equality follows from integration by parts, the second from the char-

acterization of baseline rules, the third from the change of variable y = −ϕ(x), the
fourth from the definition of ξ(x), and the last equality from the change of variable

y = x+ ϕ(x).

Then, plugging in the length of the growth interval ℓ∗C, we obtain the following

general formula for the agents’ payoff

A∗(C) = p∗C −
∫ ℓ∗C

0

ξ
(
ψ(y)

)
dC(y) + (1− p∗C)I(ŵ, r).

Next, we use similar techniques to obtain the designer’s payoff under α∗. As before,
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we start by computing the designer’s payoff over scores on the growth interval [s∗, s
∗]∫ s∗

s∗

α∗(x)
{
w(x)− ŵ

}
dF (x) = −C(s∗ − s∗)W(s∗, ŵ)

+

∫ s∗

ŝ

W(x, ŵ)dα∗(x) +

∫ ŝ

s∗

W(x, ŵ)dα∗(x)

= −C(s∗ − s∗)W(s∗, ŵ)

+

∫ s∗

ŝ

W(x, ŵ)
(
1 + ϕ′(x)

)
C ′
(
x+ ϕ(x)

)
dx

= −C(s∗ − s∗)W(s∗, ŵ) +

∫ s∗−s∗

0

W(ψ(y), ŵ)C ′(y)dy,

where the first equality follows from integration by parts, the second equality is ob-

tained by the change of variable z = −ϕ(x) in the second integral and by noticing

that W(x, ŵ) = W
(
−ϕ(x), ŵ

)
by definition of the surplus and matching functions,

and the third equality results from the change of variable y = x+ ϕ(x).

This yields the following formula for the designer’s payoff under the FP rule:

D∗(C) =
(
w̄ − ŵ

)+
+

∫ ℓ∗C

0

W
(
ψ(y), ŵ

)
dC(y).

The next calculation computes the aggregate payoff of agents on the growth in-

terval [s−, s+] under α
∗∗. Then∫ s+

s−

α∗∗(x)dF (x) = C(s+ − s−)F (s+)−
∫ s+

s−

F (x)dα∗∗(x)

= C(s+ − s−)F (s+)−
∫ s+

s−

F (x)C ′(s+ − x)dx

= C(s+ − s−)F (s+)−
∫ s+−s−

0

C ′(y)F (s+ − y)dy,

where the first equality follows from integration by parts, and the second relies on

changing the integration variable from s to y = s+ − s.
This yields the following general formula for the agents’ aggregate payoff under

α∗∗:

A∗∗(C) = p∗∗C −
∫ ℓ∗∗C

0

F (fc − y + ŝ)dC(y) + (1− p∗∗C )I(ŵ, r).

Finally, we compute the designer’s payoff under the unconstrained rule α∗∗. If

d ≤ s − ŝ, then the designer attains her first-best payoff W(ŝ, ŵ). Otherwise, her
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payoff over eligible agents is pCW(ŝ, ŵ), while ineligible agents yield a negative payoff∫ ŝ

s−

α∗∗(x)
{
w(x)− ŵ

}
dF (x) = −W(ŝ, ŵ)α∗∗(ŝ) +

∫ ŝ

s−

W(x, ŵ)dα∗∗(x)

= −W(ŝ, ŵ) (p∗∗C − C(s− ŝ)) +
∫ ŝ

s−

W(x, ŵ)C ′(s− x)dx

= −W(ŝ, ŵ) (p∗∗C − C(fC)) +
∫ ℓ∗∗C

fC

W(s− y, ŵ)C ′(y)dy

This yields the general formula

D∗∗(C) =
(
w̄ − ŵ

)+
+ C(fC)W(ŝ, ŵ) +

∫ ℓ∗∗C

fC

W(s− y, ŵ)dC(y).

The cost function C(x) is an increasing and concave function that defines a cumu-

lative density function over the interval [0, d].

Next, consider a sequence of concave cost functions {Cn} such that dCn = d is

constant. Since falsifying by more than d is never rational, we consider only the

restriction of these cost functions to the interval [0, d]. Suppose that {Cn} is an

increasing sequence such that Cn(x) converges to 1 for all x > 0. It is easy to construct

such a sequence by considering a sequence that increases in the concave order. For

example, let C0(x) = x/d and Cn+1(x) = g
(
Cn(x)

)
for any continuously differentiable,

strictly increasing and strictly concave bijective function g from [0, 1] to itself.

Then the sequence {Cn}, viewed as cdfs on [0, d], converges in distribution to the

Dirac distribution putting all mass at 0. Furthermore, the sequences p∗Cn and p∗∗Cn
converge to 1. Finally, the sequence Cn(fCn) is either constant at 1, or converges

to 1 otherwise. Using these properties, we have the following limits for the payoffs

we computed: limn→∞A∗(Cn) = 1 − F (ŝ); limn→∞D∗(Cn) =
(
w̄ − ŵ

)+
+W(ŝ, ŵ);

limn→∞A∗∗(Cn) = 0 if d ≥ s − ŝ, and limn→∞A∗∗(Cn) = 1 − F (ŝ + d) otherwise;

limn→∞D∗∗(Cn) =
(
w̄ − ŵ

)+
+W(ŝ, ŵ).

Putting these together, we obtain that the loss-rate of the designer L(Cn) always
converges to 0, whereas the gain rate of the agents becomes arbitrarily large if d ≥ s−ŝ,
and converges to F (ŝ+d)−F (ŝ)

1−F (ŝ+d)
otherwise.

Proof of Proposition 6. Let α̃∗(ŵ) denote the correspondence mapping ŵ to the set

of solutions of the baseline problem. By Lemma A.1, we can write (BP) as an opti-

mization problem over the set of nondecreasing functions from S to [0, 1] satisfying

(FPC) and (BP). This space is compact, by Helly’s theorem, and convex. Further-

more, the objective function is linear and therefore continuous in α. Hence, Berge’s
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maximum theorem implies that α̃∗(ŵ) is a continuous correspondence. By Theorem 1

and Theorem B.1, the correspondence is singleton-valued for ŵ ̸= w̄, and for ŵ = w̄

if c(s|s) < 1, so the continuity results with respect to ŵ follow.

The space of feasible and non-decreasing allocation rules is also a lattice with re-

spect to the partial order α ⪰ β ⇔ α(s) ≥ β(s), ∀s, with the corresponding strict

ordering α ≻ β if α ⪰ β and α(s) > β(s) for some s. Indeed, it is easy to see that,

for two such allocation rules α and β, their meet α ∧ β and their join α ∨ β are also

nondecreasing and feasible. Furthermore, the objective function is supermodular in α

and has strictly increasing differences in (−ŵ, α). Hence, by Milgrom and Shannon’s

monotone selection theorem (Milgrom and Shannon, 1994), α∗(·, ŵ, r) is strictly de-

creasing in ŵ for the ⪰ order (recalling that the allocation rule is independent of r

for ŵ = w̄, the only role of r is to pin down the selection at ŵ = w̄).

Furthermore, it is easy to see that α∗(s, w̄, r) is strictly increasing in r for every s,

both in the (UID) and (UDD) cases, since I(w̄, r) = r. Together with the continuity

of the correspondence at ŵ = w̄, this implies the results on the left and right limits

of α(·, ŵ, r) as ŵ → w̄.

Proof of Corollary 1. This result follows almost directly from Proposition 6. To

complete the argument, we only need to notice that, since the solution α∗(s, ŵ, r)

is continuous in s, the result that α∗(·, ŵ, r) ≻ α∗(·, ŵ′, r) for ŵ < ŵ′, implies

α∗(s, ŵ, r) > α∗(s, ŵ′, r) for all s on a subinterval of S, so A∗(ŵ, r) > A∗(ŵ′, r).

Proof of Theorem 2. The proof of this theorem relies on the following Lemma:

Lemma C.1 (Endogenizing the outside option). The following statements are equiv-

alent:

(i) α solves (PW ).

(ii) There exists an outside option ŵ(ρ) such that α solves the baseline problem (BP)

and µ
∫
S
α(s)dF (s) = ρ.

(iii) There exists ŵ such that (α, ŵ) is a saddle-point for the Lagrangian of the within

problem
∫
S
α(s){w(s)− ŵ}dF (s) + ŵρ/µ.

Furthermore, the value function of the within problem is concave in ρ, and its deriva-

tive W ′(ρ) exists almost everywhere, and is equal to ŵ(ρ)/µ.

All points are classical results in optimization theory (see, for example, Luenberger,

1969, chapter 8). Necessity of (i) holds because the within problem is linear in α.
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Coming to the proof of the theorem, the function w(s) is bounded by assump-

tion. Let w− = w(s) and w+ = w(s) be its bounds. Then it is easy to see

α∗(s, w−, r) = A∗(w−, r) = 1 and α∗(s, w+, r) = A∗(w+, r) = 0. By the continuity and

strict monotonicity results of Corollary 1, it follows that there exists a unique value

of ŵ ∈ [w−, w+], and, if ŵ = w̄, a unique value of r ∈ [0, 1], such that A∗(ŵ, r) = ρ/µ,

for any ρ ∈ [0, µ]. By Lemma C.1, α∗(·, ŵ, r) is then the unique solution to the within

problem (PW ).

The continuity and monotonicity results of Corollary 1 also imply continuity and

monotonicity of ŵ(ρ) and r(ρ).

By Lemma C.1, W (ρ) is concave on [0, µ], and since ŵ(ρ) is unique, it is dif-

ferentiable everywhere, and W ′(ρ) = ŵ(ρ)/µ. In particular, W (ρ) is strictly con-

cave at every ρ such that ŵ(ρ) is strictly decreasing, that is whenever ŵ(ρ) ̸= w̄ or

c(s|s) < 1.

Proof of Theorem 3. The objective function of the across problem is continuous and

concave in ρ by Theorem 2, and the feasible set is nonempty, compact and convex.

Therefore, it admits a solution characterized by the Kuhn-Tucker conditions (i)-(iii),

recalling that, by Theorem 2,W ′
i (ρi) = ŵi(ρi)/µ, and the outside option value ŵi(ρi) is

the one that solves the within problem as defined by (iv). The condition for uniqueness

holds because the objective function is then strictly concave by Theorem 2.

Proof of Proposition 7. Increasing γi shrinks the set of feasible allocation rules in the

original problem, therefore weakly decreases its value function W . Suppose F̃i first-

order stochastically dominates Fi, and let F x
i = xF̃i + (1 − x)Fi. Then F x

i increases

with x in the FOSD order.

Consider the within problem for group i under the score distribution F x
i . To

clarify the dependence on x, we denote its value function by Wi(ρi|x) in this proof.

By Lemma C.1,

Wi(ρi|x) = min
ŵ∈[w−,w+]

max
α

∫
Si

α(s){wi(s)− ŵ}dF x
i (s) + ŵρi/µi,

and
(
α∗
i (·, ŵi(ρi), ri(ρi)|x), ŵi(ρi)

)
is the unique solution to this saddle-point problem.

In what follows, let α∗
i (s) denote the function α∗

i (·, ŵi(ρi), ri(ρi)|x)
Let L(α, ŵ, x) =

∫
Si
α(s){wi(s) − ŵ}dF x

i (s) + ŵρi/µi be the objective function.

It is continuously differentiable in x since it is linear. Furthermore, the saddle-point

problem admits a solution for every x ∈ [0, 1] by Theorem 2. The interval [w−, w+] and

the space of nondecreasing continuous functions in which α is taken is also compact by
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Helly’s selection theorem. Therefore, we can apply the envelope theorem for saddle-

points of Milgrom and Segal (2002, Theorem 5), and our uniqueness result to obtain

that Wi(ρi|x) is differentiable in x, and

∂Wi(ρi|x)
∂x

=
∂L
(
α∗
i

(
·, ŵi(ρi), ri(ρi)

)
, ŵi(ρi), x

)
∂x

=

∫
Si

α∗
i (s){wi(s)− ŵi(ρi)}dF̃i(s)−

∫
Si

α∗
i (s){wi(s)− ŵi(ρi)}dFi(s).

Using the differential form, we have:

∂Wi(ρi|x)
∂x

=

∫
Si

α∗′
i (s)

(
W̃i(s, ŵi(ρi))−Wi(s, ŵi(ρi))

)
ds.

Next, we show this must be nonnegative. Indeed, note first

W̃+
i (s, ŵi(ρi))−W+

i (s, ŵi(ρi)) =
(
1− F̃i(s)

) ∫ si

s

{
wi(y)− ŵi(ρi)

}
d

F̃i(y)

1− F̃i(s)

−
(
1− Fi(s)

) ∫ si

s

{
wi(y)− ŵi(ρi)

}
d

Fi(y)

1− Fi(s)
.

By first-order stochastic dominance, 1 − F̃i(s) ≥ 1 − Fi(s), and the stochastic dom-

inance ordering of the conditional distributions on [s, si] is preserved since F̃i(y)

1−F̃i(s)
≤

Fi(y)
1−Fi(s)

. Since wi(·) is an increasing function, this implies

W̃+
i (s, ŵi(ρi))−W+

i (s, ŵi(ρi)) ≥ 0.

If w̄Fi
≤ w̄F̃i

≤ ŵi(ρi), then the group has low-score or neutral priority under

both distributions. Using the differential version of the objective function (DOF), the

difference in welfare is given by∫ si

si

α∗′
i (s)

{
W̃+

i (s, ŵi(ρi))−W+
i (s, ŵi(ρi))

}
ds.

Since α∗′
i (s) ≥ 0, and the difference in cumulative surplus is positive, then ∂Wi(ρi|x)

∂x
≥

0.

Suppose instead, w̄Fi
≤ ŵi(ρi) ≤ w̄F̃i

, so the shift in score distributions switches

the priority of the group. Then, using (DOF) for Fi, (DOF) for F̃i, and the relationship
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W−(s, ŵ) =W+(s, ŵ)− (w̄ − ŵ), we can write the welfare change as

(
w̄F̃i
− ŵi(ρi)

)(
1−

∫ si

si

α∗′
i (s)ds

)∫ si

si

α∗′
i (s)

{
W̃+

i (s, ŵi(ρi))−W+
i (s, ŵi(ρi))

}
ds,

where the second term is positive for the same reasons as in the previous case, and

the first term is equal to
(
w̄F̃i
− ŵi(ρi)

)
α∗′
i (si) ≥ 0. Hence, again, ∂Wi(ρi|x)

∂x
≥ 0.

Suppose finally ŵi(ρi) ≤ w̄Fi
≤ w̄F̃i

so the priority is to high scores under both

distributions. Then, using (DOF) and the relationship W−(s, ŵ) =W+(s, ŵ)− (w̄−
ŵ), we can write the welfare change as

(
w̄F̃i
− w̄Fi

)(
1−

∫ si

si

α∗′
i (s)ds

)∫ si

si

α∗′
i (s)

{
W̃+

i (s, ŵi(ρi))−W+
i (s, ŵi(ρi))

}
ds,

and both terms are positive, and then ∂Wi(ρi|x)
∂x

≥ 0.

Now, consider the across problem. Applying the (classical) envelope theorem to

this problem, and letting ρ∗ denote its unique solution, we obtain

∂W (x)

∂x
= µi

∂Wi(ρ
∗
i |x)

∂x
≥ 0.

Proof of Proposition 8. Consider the problem of the decision maker deciding how to

allocate objects. They can only condition their decision on the group label, and the

signal provided by the designer’s chosen information structure. Under the information

structure that recommends allocation with probability α∗
i (s) and rejection otherwise,

let gi ∈ [0, 1] be the probability that the decision maker allocates an object to members

of group i with a positive recommendation, and bi ∈ [0, 1] the probability that they

allocate an object to members of group i with a negative recommendation. Their

problem is

max
(g,b)

∑
i

µi

{
gi

∫
Si

α∗
i (s)w̃i(s)dFi(s) + bi

∫
Si

(
1− α∗

i (s)
)
w̃i(s)dFi(s)

}
s.t.

∑
i

µi {giA∗
i + bi(1− A∗

i )} ≤ ρ̄

µi {giA∗
i + bi(1− A∗

i )} ≥ ϕiρ̄ ∀i.

Then, α∗ is obedient if choosing (goi , b
o
i ) = (1, 0) for every i is a solution to the

decision maker’s program. Since the program of the decision maker is linear, global
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optimality is implied by local optimality. So, to check obedience, we only need to

verify that (go, bo) is a local optimum.

This is the case if the decision maker is perfectly aligned with the designer, w̃i = wi.

Indeed, for (gi, bi) in the neighborhood of (goi , b
o
i ), we have 1 ≥ gi − bi ≥ 0, therefore

the effective allocation rule implemented by the decision maker is αi(s) = bi
(
1 −

α∗
i (s)

)
+ giα

∗
i (s). It satisfies falsification proofness since

0 ≤ αi(t)− αi(s) = (gi − bi)
(
α∗
i (t)− α∗

i (s)
)
≤ α∗

i (t)− α∗
i (s) ≤ ci(t|s),

and could therefore have been implemented by the designer in our original problem,

so it must be suboptimal.

In fact, (go, bo) is uniquely optimal when preferences are aligned. Again, we only

need to check that locally. Indeed, for any (gi, bi), the resulting effective allocation rule

αi is in the family of possibly optimal rules α∗
i (·, ŵ, r) if and only if (gi, bi) = (goi , b

o
i ).

Indeed, it is true for (goi , b
o
i ), and if (gi, bi) ̸= (goi , b

o
i ), then αi has the same growth

interval as α∗
i . However, for ŵ ̸= w̄, each α∗

i (·, ŵ, r) has a distinct growth interval. If

α∗
i = α∗

i (·, w̄, r) for some r, then the only possibility for αi to be possibly optimal is if

αi = α∗
i (·, w̄, r′) for r′ ̸= r. But then, αi and α

∗
i must differ by an additive constant,

which contradicts the definition of αi.

Suppose then that the decision maker is not perfectly aligned with the designer.

We let

Gi(w̃i) =

∫
Si

α∗
i (s)w̃i(s)dFi(s),

and

Bi(w̃i) =

∫
Si

(
1− α∗

i (s)
)
w̃i(s)dFi(s),

be the linear coefficients corresponding to gi and bi in the decision maker’s objective

function. Then, we have, for every i,
∣∣Gi(w̃i)−Gi(wi)

∣∣ < εA∗
i , and

∣∣Bi(w̃i)−Bi(wi)
∣∣ <

ε(1 − A∗
i ). Therefore, we can choose ε sufficiently small to ensure that every strict

inequality holding between any pair among the scalars {0} ∪
⋃
i∈I
{
Bi(wi), Gi(wi)

}
also holds for {0} ∪

⋃
i∈I
{
Bi(w̃i), Gi(w̃i)

}
, regardless of w̃i.

Suppose, by contradiction, that (goi , b
o
i ) is not optimal for the decision maker with

preferences given by w̃. Then either one of the following local deviations must be

strictly beneficial for the decision maker. For each of them, we show it leads to a

contradiction.

(a) Slightly decreasing gi from g0i = 1: For that to be strictly beneficial, it must be

that Gi(w̃i) < 0, therefore Gi(wi) ≤ 0. However, this can only be true if the quota
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constraint is binding for i at (go, bo), or it would contradict the strict optimality

of (go, bo) under wi. But then decreasing gi is infeasible as it violates the quota

for i.

(b) Slightly increasing bi from boi = 0: This is strict beneficial only if Bi(w̃i) > 0,

implying Bi(wi) ≥ 0. Then the resource constraint must be binding at (go, bo),

or it would contradict the strict optimality of (go, bo) under wi. Therefore this

deviation is not feasible as it would violate the resource constraint.

(c) Decreasing gi and increasing bi so as to keep the mass of objects allocated to group

i constant: For this to be strictly beneficial, it must be that Gi(w̃i) < Bi(w̃i),

implying Gi(wi) ≤ Bi(wi). The same deviation would then be feasible and weakly

beneficial at wi contradicting the strict optimality of (go, bo).

(d) Decreasing gi and increasing bj for j ̸= i while keeping the total mass of objects

allocated constant: Then Gi(w̃i) < Bi(w̃j), implying Gi(wi) ≤ Bi(wj). This can

only hold if the quota constraint of group i is binding at (go, bo), for otherwise it

would contradict the strict optimality of (go, bo) at wi. But then this deviation

is infeasible.
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Supplementary appendix

D Additional comparative statics

Returns to scale in falsification We investigate how the shape of the falsification

cost function influences optimal allocations. Specifically, we focus on the class E of

Euclidean cost functions, c(t|s) = C
(
|t− s|

)
, where C is either concave or convex, and

examine the effect of increasing the convexity of the cost function. Intuitively, greater

convexity captures lower economies of scale in the magnitude of falsification.

To compare cost functions, we need some normalization. We normalize costs so

that the maximum amount of falsification an agent is willing to undertake to get

the good is identical for all cost functions and less than s∗(0) − s∗(0). That is, we

consider two cost functions C, Ĉ such that C−1(γ) = Ĉ−1(γ) < s∗(0) − s∗(0). We say

that Ĉ is more convex than C, and denote Ĉ ⪰vex C, if either Ĉ is convex and C is

concave, or both are concave and C is more concave than Ĉ in the usual sense, or

both are convex and Ĉ is more convex than C in the usual sense.24 We denote the

corresponding baseline allocation rules by α∗, α̂∗, and their growth intervals by I∗, Î∗.

Proposition D.1 (Effect of lowering economies of scale). If Ĉ is more convex than

C, then:

(i) I∗ ⊆ Î∗ ⊆ [s∗(0), s
∗(0)]. Furthermore, I∗ = Î∗ ⊂ [s∗(0), s

∗(0)] if both cost

functions are concave.

(ii) If I∗ ⊂ [s∗(0), s
∗(0)], there exists a threshold s̃ ∈ I∗ such that α̂∗(s) ≤ α∗(s) for

s > s̃, and α̂∗(s) ≥ α∗(s) for s < s̃.

(iii) If I∗ = Î∗ = [s∗(0), s
∗(0)], then both cost functions are convex and α̂∗(s) ≤ α∗(s)

for all s if the group has low-score priority, but α̂∗(s) ≥ α∗(s) for all s if the

group has high-score priority.

Proof of Proposition D.1. When C is concave, the growth interval is determined by

the equation m(s∗) − s∗ = L, and does not vary with the cost function, and it is a

subset of [s∗(0), s
∗(0)] since we assumed L < s∗(0)− s∗(0). For convex cost functions,

the growth interval is given by the equation m(s∗)− s∗ = min{s∗(0)− s∗(0), 1/C ′(0)}
by Proposition 1. Furthermore, if both cost functions are convex, the convex ordering

and our normalization imply Ĉ ′(0) ≤ C ′(0), hence I∗ ⊆ Î∗.

24That is, there exists an increasing and concave function g : [0, 1] → [0, 1] such that C = g ◦ Ĉ
when both are concave, or an increasing and convex function h : [0, 1]→ [0, 1] such that Ĉ = h ◦ C if
both are convex.
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Next, let δ(s) = α̂∗(s)− α∗(s). Suppose first that both cost functions are concave

and let I∗ = [s∗, s
∗] be their common growth interval. In particular δ(s∗) = δ(s∗) = 0.

Furthermore, δ is differentiable and

γδ′(s) =


{
1− g′ ◦ Ĉ

(
m(s)− s

)}
Ĉ ′
(
m(s)− s

)
if s ∈ [s∗, ŝ],{

1− g′ ◦ Ĉ
(
s−m−1(s)

)}
Ĉ ′
(
s−m−1(s)

)
if s ∈ [ŝ, s∗]

,

where g is an increasing and concave bijection of [0, 1] such that C = g ◦ Ĉ. As such

g′(0) ≥ 1 ≥ g′(1), and g′ is a non-increasing function. Since C ′ ≥ 0, this implies δ′ is

single crossing from the positives to the negatives on [s∗, ŝ] and from the negatives to

the positives on [ŝ, s∗]. Therefore there exists a single threshold s̃ ∈ [s∗, s
∗] such that

δ(s) ≥ 0 for s ≤ s̃ and δ(s) ≤ 0 for s ≥ s̃.

If the two cost functions are convex, then for Ĉ to be more convex than C, it must

be that Ĉ ′(0) ≤ C ′(0) which implies (ii).

Let C̃ be the unique linear cost function that belongs to our normalized class of

functions. Since C̃ is both concave and convex, point (ii) is satisfied when comparing

C̃ to a concave cost function C, and also when comparing a convex cost function Ĉ to

C̃. Since α̂∗ − α∗ = α̂∗ − α̃∗ + α̃∗ − α∗, it is also satisfied when comparing Ĉ to C.
If I∗ = Î∗ = [s∗(0), s

∗(0)], then both functions must be convex by (i). If the group

has low-score priority, then α∗(s∗(0)) = α̂∗(s∗(0)) = 0, and both allocation rules

are linear with respective slopes C ′(0) ≥ Ĉ ′(0), implying α̂∗(s) ≤ α∗(s) for all s. If

instead the group has high-score priority, the slopes compare in the same way, but

the allocation rules are tied at s∗(0) instead of s∗(0), implying α̂∗(s) ≥ α∗(s) for all

s.

In words, lower economies of scale, just like higher gaming ability, benefit low-score

agents and hurt high-score agents. However, if the diseconomies of scale become too

strong, as in case (iii), the effect is uniform across all scores, resembling the impact

of high gaming abilities as described in Proposition 3.

Score distribution We examine what changes in the score distribution result in a

uniformly higher optimal allocation probability. To this end, we redefine the score as

the surplus, so s = w(s) − ŵ, which effectively transforms the score distribution F .

Consequently, the eligibility threshold is fixed at 0. We consider two atomless score

distributions, F̂ and F̃ , whose common support [s, s] includes a neighborhood of 0.

The function ∆(s) = F̃ (s)− F̂ (s) denotes the change in the score distribution.
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All distributional effects on the allocation rule are transmitted through the match-

ing functions m̂(s) and m̃(s). We begin by showing that the allocation rules satisfy

α̃(s) ≥ α̂(s) for every s, and for every cost function that meets the conditions in

(UID) or (UDD), if and only if m̃(s) ≤ m̂(s) for every s ≤ 0. We then provide a

necessary and sufficient condition on the distributions for the matching function to

decrease.

Note that the matching function was defined on the interval [s∗(0), 0], but the

lower bound s∗(0) may now depend on the specific score distribution used. To ease

the exposition, we extend each matching function m̂(s) and m̃(s) to the left by setting

m̂(s) = m̂
(
ŝ∗(0)

)
for s ≤ ŝ∗(0), and m̃(s) = m̃

(
s̃∗(0)

)
for s ≤ s̃∗(0).

Proposition D.2 (Effect of score distribution). The following statements are equiv-

alent:

(a) The allocation rules satisfy α̃(s) ≥ α̂(s) for every s, and every cost function that

satisfies (UID) or (UDD).

(b) The matching functions satisfy m̃(s) ≤ m̂(s) for every s ≤ 0.

(c) For every 0 > s ≥ max{ŝ∗(0), s̃∗(0)},∫ m̃(s)

s

xdF̃ (x) ≥
∫ m̃(s)

s

xdF̂ (x).

(d) For every 0 > s ≥ max{ŝ∗(0), s̃∗(0)},∫ 0

s

{
∆(s)−∆(x)

}
dx+

∫ m̃(s)

0

{
∆
(
m̃(s)

)
−∆(x)

}
dx ≥ 0.

Proof of Proposition D.2.

• (b)⇒ (a). Suppose (b) holds.

◦ We start by showing (i) s̃∗(0) ≤ ŝ∗(0) and (ii) s̃∗(0) ≤ ŝ∗(0).

First suppose s̃∗(0) = s. Then (ii) must hold, and (i) also because, otherwise, we

would have the following contradiction

s = s̃∗(0) = m̃
(
s̃∗(0)

)
≤ m̂

(
s̃∗(0)

)
< m̂

(
ŝ∗(0)

)
= ŝ∗(0),

where the first inequality is by (b), and the second inequality because m̂ is decreasing

on [ŝ∗(0), 0].
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Next, suppose ŝ∗(0) = s. Then (i) must hold, and (ii) also because, otherwise, we

would have the following contradiction

s̃∗(0) = m̃−1
(
s̃∗(0)

)
< m̃−1

(
ŝ∗(0)

)
≤ m̂−1

(
ŝ∗(0)

)
= ŝ∗(0) = s,

where the first inequality is because m̃−1 is decreasing on [0, s̃∗(0)], and the second

inequality is by (b).

If neither of these cases hold, by Lemma 1, (iii), we must have s̃∗(0) = s and

ŝ∗(0) = s, which imply (i) and (ii).

An implication of (i) and (ii) is (iii): if F̂ has high-score priority, then so does F̃ ,

and if F̃ has low-score priority, then so does F̂ .

◦ Next, consider a cost function that satisfies (UDD).

(b) implies m̃(ŝ∗) ≤ m̂(ŝ∗) = ŝ∗, therefore∫ m̃(ŝ∗)

ŝ∗

ct+(x|x)dx ≤
∫ ŝ∗

ŝ∗

ct+(x|x)dx = 1.

Then, using (B) and point (i) we just proved, we must have s̃∗ ≤ ŝ∗.

Then, for every s ∈ [ŝ∗, s̃
∗],

α̃(s)− α̂(s) = Γ̃udd 1E +

∫ ŝ∗

s̃∗

ct+(x|x)dx ≥ 0,

where E is the event in which only F̃ has high-score priority (the event in which only

F̂ has high-score priority is impossible by (iii)). This also implies s̃∗ ≤ ŝ∗, so, for any

s ≥ s̃∗, we also have 1 = α̃(s) ≥ α̂(s). Finally, for s ≤ ŝ∗, we have α̃(s) ≥ α̂(s) = 0. ◦

Finally, consider a cost function that satisfies (UID). (b) implies m̃(ŝ∗) ≤ m̂(ŝ∗) = ŝ∗,

therefore

c
(
m̃(ŝ∗)|ŝ∗

)
≤ c
(
ŝ∗|ŝ∗

)
≤ 1.

Then, using (B) and point (i) we just proved, we must have s̃∗ ≤ ŝ∗.

(b) also implies m̂−1(s̃∗) ≥ m̃−1(s̃∗) = s̃∗, therefore

c
(
s̃∗|m̂−1(s̃∗)

)
≤ c(s̃∗|s̃∗) ≤ 1.

Then, using (B) and point (ii) we just proved, we must have s̃∗ ≤ ŝ∗.
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Then, for every s ∈ [ŝ∗, 0],

α̃(s)− α̂(s) = Γ̃uid 1E −
∫ ŝ∗

s̃∗

cs
(
m̃(x)|x

)
dx−

∫ s

ŝ∗

{
cs
(
m̃(x)|x

)
− cs

(
m̂(x)|x

)}
dx

≥ 0,

where Γ̃uid ≥ 0 by definition, the second term is nonnegative by cost monotonicity,

and the third term is nonnegative by (UID) and (b).

And for every s ∈ [0, s̃∗],

α̃(s)− α̂(s) = Γ̂uid 1E ′ +

∫ ŝ∗

s̃∗
ct
(
x|m̂−1(x)

)
dx

+

∫ s̃∗

s

{
ct
(
x|m̂−1(x)

)
− ct

(
x|m̃−1(x)

)}
dx

≥ 0,

where Γ̂uid ≥ 0 by definition, E ′ is the event in which only F̂ has low-score priority, the

second term is nonnegative by cost monotonicity, and the third term is nonnegative

by (UID) and (b).

• (a)⇒ (b). Suppose (a) holds, and consider the family of linear cost functions

c(t|s) = β|t − s|, for β > 0. By choosing β sufficiently low, we can ensure neither

of the allocation rules saturates the probability constraint. In this case, α̂β(s) > 0

if and only if F̂ has high-score priority, but then (a) implies F̃ must have high-score

priority as well. Similarly α̃β(s) < 1 if and only if F̃ has low-score priority, and then

(a) implies F̂ has low-score priority as well.

Then α̃β(s) = β(s− s̃∗) on [s̃∗, s̃
∗], and α̂β(s) = β(s− ŝ∗) on [ŝ∗, ŝ

∗]. By varying β

from 0 to infinity, we have s̃∗ span [s̃∗(0), 0), and ŝ∗ span [ŝ∗(0), 0). For β sufficiently

large, we have both s̃∗ > s̃∗(0) and ŝ∗ > ŝ∗(0). Pick such a value of β, then by (a),

we have

−βs̃∗ = α̃β(0) ≥ α̂β(0) = −βŝ∗,

so s̃∗ ≤ ŝ∗. Furthermore, for such a value of β, we must have

m̃(s̃∗) =
1

β
+ s̃∗ ≤

1

β
+ ŝ∗ = m̂(ŝ∗) ≤ m̂(s̃∗).

Varying β so s̃∗ spans [s∗(0), 0), this shows (b).

• (b)⇔ (c)⇔ (d). Since, for all s < 0, every x between m̃(s) and m̂(s) is nonnegative,

m̃(s) ≤ m̂(s) is equivalent to
∫ m̂(s)

m̃(s)
xdF̂ (x) ≥ 0. By definition of the matching
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functions, ∫ m̃(s)

s

xdF̃ (x) =

∫ m̂(s)

s

xdF̂ (x) = 0,

therefore ∫ m̂(s)

m̃(s)

xdF̂ (x)−
∫ m̃(s)

s

xdF̃ (x) =

∫ m̃(s)

s

xdF̃ (x)−
∫ m̃(s)

s

xdF̂ (x).

This shows the equivalence between (b) and (c). The inequality in (d) results from

applying integration by parts to (c).

Hence, a simple first-order stochastic dominance shift is not sufficient to increase

the allocation probability for all scores. Since it is challenging to interpret conditions

(c) and (d), we provide a more easily interpretable sufficient condition on ∆. We say

that ∆ divests an interval I ⊆ S if every score in I (formally, every measurable subset

of I) is less likely under F̃ than under F̂ . In other words, for every [s, s′] ⊆ I,

∆(s′)−∆(s) =
{
F̃ (s′)− F̃ (s)

}
−
{
F̂ (s′)− F̂ (s)

}
≤ 0,

or equivalently, if ∆ is nonincreasing on I. Conversely, if ∆ is nondecreasing on I, we

say it invests I.

Proposition D.3. Suppose there exists a ∈ [s, 0) and b ∈ (0, s] such that

1. ∆(a) = ∆(b) = 0, ∆(s) ≥ 0 for all s ≤ a, and all s ≥ b;

2. ∆ divests [a, 0] and invests [0, b];

3.
∫ 0

s
∆(x)dx ≤ 0 and

∫ s
0
∆(x)dx ≤ 0.

Then the allocation rules satisfy α̃(s) ≥ α̂(s) for every s.

In particular, a change in the distribution that shifts mass from ineligible scores to

eligible ones satisfies the conditions of Proposition D.3, thereby uniformly increasing

the allocation probability.

Proof of Proposition D.3. We show the conditions of the proposition imply that, for

every z < 0 < y,
∫ 0

z

{
∆(z) − ∆(x)

}
dx ≥ 0, and

∫ y
0

{
∆(y) − ∆(x)

}
dx ≥ 0, which

implies condition (d) of Proposition D.2.

If z < a, then∫ 0

z

{
∆(z)−∆(x)

}
dx = −z∆(z)−

∫ 0

z

∆(x)dx ≥ −z∆(z)−
∫ 0

s

∆(x)dx ≥ 0,
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where the first inequality is from condition 1, and the second inequality is from condi-

tion 3 and condition 1, as ∆(z) ≥ 0. If z ≥ a, then condition 2 implies ∆(z) ≥ ∆(x)

for every x ∈ [z, 0]. The proof is symmetric for the integral from 0 to y.

E Algorithm for the across problem

We present an algorithm that finds a solution to the across problem. We extend the

definition of ŵϕi as the unique value of ŵ such that µiA
∗
i (ŵ, r) = ϕiρ̄ for some r, and

let rϕi be the unique value of r that satisfies this equality if ŵϕi = w̄i (otherwise let r
ϕ
i

be any value on [0, 1]).

Algorithm 1: Algorithm to solve the across problem

∀i, ρ0i ← µiA
∗
i (0, 1);

R0 ← R(ρ0);

Q0 ← Q(ρ0);

k ← 0;

repeat

k ← k + 1;

∀ℓ ∈ Qk−1, ŵkℓ ← ŵϕℓ and rkℓ ← rϕℓ ;

if Rk−1 = 0 then

∀ℓ /∈ Qk−1, ŵkℓ ← 0 and rkℓ ← 1;

else

ŵ, r ← Solution of:
∑

ℓ∈Qk−1 ϕℓρ̄+
∑

i/∈Qk−1 µiA
∗
i (ŵ, r1ŵ=w̄i

) = ρ̄;

∀ℓ /∈ Qk−1, ŵkℓ ← ŵ and rkℓ ← r1ŵ=w̄ℓ
;

end

∀i, ρki ← µiA
∗
i (ŵ

k
i , r

k
i );

Rk ← R(ρk);
Qk ← Q(ρk);

until Qk = Qk−1 and Rk = Rk−1;

We did not specify how to find a solution (ŵ, r) to∑
ℓ∈Qk−1

ϕℓρ̄+
∑

i/∈Qk−1

µiA
∗
i (ŵ, r1ŵ=w̄i

) = ρ̄

within the algorithm. Note, however, that the left-hand side of the equation can be

decreased continuously by continuously raising ŵ whenever ŵ ̸= w̄i, for all i, and by

continuously decreasing r from 1 to 0 and keeping ŵ constant whenever ŵ = w̄i for
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some i. Therefore a simple algorithm can solve this equation.

Proposition E.1. Algorithm 1 finds a solution of (PA) in finitely many steps.

Proof. The sequence (Qk, Rk) is increasing and bounded above by (I, 1) in the (⊆,≤)
order on 2I × {0, 1}, so the algorithm stops in finitely many steps. Let k be the step

at which it stops. Let λR = ŵki and λi = 0 for all i /∈ Qk. This is consistent since ŵki

must be equal across all i /∈ Qk. Let λℓ = λR− ŵkℓ for ℓ ∈ Qk. Then it is easy to verify

the vector of multipliers λ, ρk, ŵk and rk satisfy all the conditions of Theorem 3.

Therefore ρk is a solution to the across problem.

F Continuum as a single-agent

In this appendix, we explain why treating the continuum as a single agent is without

loss of generality. The continuum of agents is interpreted as a limit case where the

size of the population becomes arbitrarily large. We already discussed why there is

no loss of generality in considering allocation rules that only depend on the observed

score profile and group identity. In the finite population case, an agent j in group

i then receives the good with ex post allocation probability αi,j(sj, s−j). As often

in mechanism design, the problem can be reformulated as one of choosing interim

allocation probabilities αi,j(sj) = Es−j
αi,j(sj, s−j). Furthermore, given the symmetry

of our setup, we can assume symmetry across agents of the same group, so we can

write αi(s) for the interim allocation probability for an agent with score s in group i.

Then the interim problem of optimizing over symmetric interim allocation rules in any

finite population is exactly the program we solve in the continuum.25 However, to find

a solution to the initial program, we need to ensure that the interim allocation rules

that solve the interim program are feasible in the sense that they can be obtained

from an ex post allocation rule. In the finite population case, the exact condition

for this to be possible can be derived from Che, Kim, and Mierendorff (2013) which

generalizes the condition of Border (1991) to setups with multiple goods and quotas.

In the limit case of the continuum, however, the interim rules can be used directly

as ex post allocation rules that only depend on each agent’s score, so feasibility is

automatically satisfied.

25The same approach is used in Mylovanov and Zapechelnyuk (2017).

74


	Introduction
	The allocation problem
	Baseline problem
	Preliminary analysis
	Baseline rules
	The shape of baseline rules

	Baseline comparative statics and welfare
	The effect of falsification cost
	Welfare consequences of falsification proofness

	Solution of the designer's problem
	Optimal within group allocation
	Optimal across group allocation
	Designer welfare and comparative statics

	Discussion
	Related literature
	Simplifying the baseline problem
	Baseline rule: upward decreasing differences
	Proofs
	 Additional comparative statics 
	Algorithm for the across problem
	Continuum as a single-agent

