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“A strategy-proof algorithm levels the playing field by diminishing the harm done

to parents who do not strategize or do not strategize well.”

Boston Public School Strategic Planning Team

1 Introduction

Goods, services and rewards1 are frequently allocated via non-market mechanisms,

either due to constraint or because monetary transfers are ineffective at targeting

deserving recipients.2 To target eligible agents, non-market allocation mechanisms

must rely on data about their characteristics. For instance, seats in schools are as-

signed using priorities that combine multiple criteria, green labels are awarded based

on measured emissions, and public housing is allocated on the basis of criteria such

as household income. Eligibility is often assessed through a score measuring charac-

teristics or performance, acting as a proxy for the social value of assigning a unit of

the good to an agent.

However, reliance on the score creates strong incentives to game it. Consequently,

practices such as falsification, forgery, greenwashing, teaching to the test, or ma-

nipulating statistics are commonplace. For example, suggestive evidence indicates

that parents fake addresses to gain admission to desirable public schools in Denmark

(Bjerre-Nielsen, Christensen, Gandil, and Sievertsen, 2023), French firms underre-

port workforce size to avoid legal obligations (Askenazy, Breda, Moreau, and Pecheu,

2022), and doctors manipulate their patient’s priority in organ transplant waiting lists

in the USA and Germany (Bolton, 2018; McMichael, 2022).

Gaming is detrimental. Firstly, it alters achievable assignments, unfairly favoring

agents with higher gaming ability. Secondly, it generates various negative externalities

such as deteriorating the informational content of the score,3 rendering the mechanism

politically unsustainable, or depleting the supply of objects. For instance, authori-

ties in Boston and Chicago abandoned the “Boston” school assignment mechanism

due to concerns about its vulnerability to manipulation (Pathak and Sönmez, 2013).

In Germany, a scandal involving the manipulation of the liver allocation system by

transplant providers led to a 20%-40% erosion in organ donations (Bolton, 2018).

1Goods include public housing, seats in schools and vaccines; services include training, education
and financial assistance programs; rewards include promotions, labels and certificates awarded to
businesses meeting certain emissions or social responsibility criteria.

2See Condorelli (2013) and Akbarpour, Dworczak, and Kominers (2020) for a theory of when
non-market mechanisms are optimal.

3This is an instance of Goodhart’s law: “when a measure becomes a target, it ceases to be a good
measure.”
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In this paper, we show how to maximize allocative efficiency while ensuring fraud-

proofness, meaning that agents cannot benefit by gaming their scores. Specifically, we

address the problem of allocating a fixed mass of homogeneous objects (or prizes) to

a heterogeneous population of agents using non-market mechanisms based on scores.

The score is a publicly available but falsifiable metric that measures an agent’s pri-

vate characteristics. Throughout the paper, we use the term falsification as a broad

category that encompasses gaming, manipulation or any other socially wasteful ac-

tivities agents undertake to artificially alter their observed score compared to their

natural score.4 The natural score reflects an agent’s true characteristics and emerges

when the agent does not engage in such activities. We assume an agent’s score is

positively correlated with their worthiness : the social value of giving them an object.

The designer’s outside option of not allocating an object is zero. We characterize the

falsification-proof mechanism that maximizes expected social value assuming costly

falsification. It allocates the good randomly with a probability that increases with

the score, generating both rejection and allocation errors.

Our analysis incorporates non-falsifiable public information about agents, which

the designer can use in conjunction with the score, as well as private information of

agents beyond their natural score. We show, however, that falsification-proof non-

market allocation mechanisms cannot condition on private information that is costless

to misrepresent, and must exclusively rely on the score and public information. Public

information effectively splits the population into groups with the same public char-

acteristics. Additionally, we allow for a resource constraint on the mass of available

objects, and for exogenous group-specific quotas.5 The falsification-proofness require-

ment completes the set of constraints faced by the designer. Our approach, therefore,

follows the mechanism design tradition in seeking to maximize expected social value,

while imposing desirable or practical criteria as constraints on the designer, akin to

the market design literature.

Falsification-proofness is analogous to strategy-proofness or the truth-telling con-

straint in standard mechanism and market design settings. However, in our setup,

with falsification costs and no transfers, optimal mechanisms may have to induce

falsification, as shown in Perez-Richet and Skreta (2022). Consequently, imposing

falsification-proofness entails a loss in allocative efficiency for the designer. In spite

4Frankel and Kartik (2019) first point out that manipulations lead to a distinction between an
agent’s natural score–obtained without interfering with the measuring technology–and the observable
score, which may result from gaming, manipulation, or falsification.

5Such quotas may reflect re-distributive or fairness concerns (see Abdulkadiroğlu and Sönmez,
2003; Abdulkadiroğlu, 2005; Dur, Pathak, and Sönmez, 2020; Çelebi and Flynn, 2022).
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of this loss, we argue for the importance of insisting on falsification-proofness. Costly

falsification may unfairly burden certain agents and raise concerns about fairness,

especially when gaming ability varies among individuals.6 Falsification proof mech-

anisms are fair in the sense that they guarantee the same assignment probability

to all agents with the same score. Preventing falsification is desirable because al-

location mechanisms may otherwise be politically unsustainable, generate negative

externalities, and impose heavy burdens on agents. Negative externalities include

score distortions and trust erosion.7 And even though falsification might be useful

for a designer who is not concerned with the aforementioned externalities, the mech-

anism may come under scrutiny when induced fraud is detected, possibly leading to

its collapse as in the case of the Boston mechanism.

In this setting, the first best–that is the optimum in the absence of falsification-

proofness (FP), quota and resource constraints–amounts to allocating an object with

probability one to agents with scores generating social value above the designer’s

outside option (which is zero in the unconstrained problem) and not to allocate oth-

erwise. We refer to the score at which the social value within a given group is equal

to the designer’s outside option as the group’s eligibility threshold. Faced with the

first-best, an agent with a score just below this threshold has an incentive to falsify

to a score just above the threshold. Falsification-proofness implies optimal allocation

rules must be smooth, monotonic, and flat outside of a growth interval whose size

depends on the magnitude of falsification costs. The rate of growth of the assignment

probability around the threshold reflects whether the falsification technology exhibits

increasing or decreasing returns to fraud. The resource and quota constraints modify

the designer’s outside option from assigning objects to agents in a given group leading

to quota- and scarcity-driven endogenous prioritization of groups which translates to

group-specific eligibility thresholds.

To derive the optimum we split the designer’s problem into an across-groups prob-

lem, that consists of allocating objects across groups while satisfying the quota and

resource constraints, and a series of within-group problems, each dealing with fully

allocating a fixed mass of objects according to scores within a group. To solve the

within-group problem, we use a Lagrangian approach to convert it into a baseline

problem, eliminating the resource constraint by incorporating its shadow price as an

6For instance, previous studies (Pathak and Sönmez, 2013; Bjerre-Nielsen et al., 2023) have shown
that sophisticated gaming in school choice mechanisms resulted in better assignments for those who
engaged in such practices and adversely affected others.

7For example, greenwashing may blur our assessment of emissions levels. Trust erosion can deplete
supply, but there is also evidence that dishonest behavior spreads in society (see, for example, Rincke
and Traxler, 2011; Galbiati and Zanella, 2012; Alm, Bloomquist, and McKee, 2017; Ajzenman, 2021).
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endogenous outside option value for allocating an object. This outside option value is

treated as exogenous when we solve the baseline problem which only features the FP

and the probability constraint. The solution of the baseline problem gives a designer-

optimal allocation for a fixed outside option. To solve the designer’s problem, we

select group-specific outside options to satisfy the resource and quota constraints.

Falsification-proofness puts a bound on the gain in allocation probability between

any two scores, equal to the corresponding least cost of falsification. We solve the

baseline problem in closed form for two broad classes of least-cost functions. If the

least-cost function has upward increasing differences, (UID) the binding falsification-

proofness constraints are for far-apart types which precludes the use of the first-

order approach. To address this challenge, we transform the baseline to a program

equivalent to the dual of the classical Monge-Kantorovich optimal transport problem

which we leverage to characterize the optimal within-group allocation rule under in

Theorem 1 in closed-form. If, instead, the least-cost function has upward decreasing

differences, (UDD), falsification-proofness constraints bind locally and we use a first-

order approach to obtain the solution, which we characterize in Theorem 2. Theorem 3

then outlines how to find the solution to the within problem in each group by adjusting

the endogenous outside option in the baseline problem. Finally, in Theorem 4, we

characterize the solution of the across problem and provide an algorithm to find it.
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γ = 0.5, ŵ = 0.0, λR = 0.0

Figure 1: Falsification cost 1
γ
c(t|s) = 1

γ

|t−s|
(1+|t−s|) if t ≥ s, and score distribution = U(−1, 1); mass

of objects: ρ = 0.5

We analyze various comparative statics effects starting with the baseline problem.

Unsurprisingly, higher gaming ability (a scaling factor of costs) is detrimental for the

designer. The impact on agents is more nuanced. It increases the allocation probabil-

ity of low-score agents, but decreases that of high-score agents when gaming ability is

initially sufficiently low. If gaming ability is initially high, the allocation probability
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increases for all scores if the average worthiness is sufficiently high, and otherwise

decreases for all scores (see Figure 1). For the designer, a first-order stochastic domi-

nance shift of the score distribution is beneficial, but not necessarily for agents. If the

shift replaces agents with scores below the eligibility threshold by agents scoring above

it, then the allocation probability becomes uniformly higher. Comparative statics of

the baseline problem abstract from the across-group feedback effects that result from

the changes in the Lagrange multipliers on the resource and quota constraints which

determine the designer’s group-specific outside options. When we take into account

this feedback, we see how changes in the score distribution or lower bound on gaming

ability in one group may impact all other social groups with the effects being more

pronounced for groups with non-binding quota constraints.

Beyond these within and across-group feedback effects, our analysis underscores

that the optimal allocation rule is determined by the agents with the highest gaming

ability who have the least cost of falsifying. Consequently, when agents from different

social groups or agents with large heterogeneity in gaming abilities are treated as a

single group, this practice hurts the most agents with low gaming ability. To see this,

note that Figure 1 depicts the optimal rule for four different groups with different

gaming abilities ranging from 0.5 to 2. When we treat all groups as one, the optimal

falsification allocation rule is the blue one on that figure that corresponds gaming

ability equal to 2. The blue rule imposes excessive distortions to the group with gam-

ing ability equal to 0.5 that would face the yellow allocation rule if the designer could

condition on observable group labels. This finding provides a rational for condition-

ing as much as possible on agents’ observable but unfalsifiable characteristics offering

support to affirmative-action style policies within the context of our model.

Related literature. We contribute to the literature on optimal allocation mech-

anisms to privately informed agents which can be categorized along two essential

dimensions: the designer’s objective, and the tools available for allocation targeting.

In the seminal contribution of Myerson (1981), the designer uses monetary transfers

to target allocation so as to maximize revenue. However, monetary transfers may

lose their effectiveness with a more general designer’s objective, as seen in Condorelli

(2013), or wishes to maximize a combination of weighted utilitarian and revenue

objectives, as demonstrated in Akbarpour, Dworczak, and Kominers (2020). Both

studies establish conditions under which the designer optimally refrains from using

transfers entirely, with Akbarpour et al. (2020) showing how publicly available data

can be a complementary tool for targeting. In this study, we consider a general ob-
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jective, and exclude transfers altogether. While there may be exogenous reasons to

rule out transfers, Condorelli (2013) and Akbarpour et al. (2020) show that this is

optimal if the designer’s utility from allocation is weakly or negatively correlated with

willingness to pay. By contrast to these works, we consider a hybrid setting where

agents have both soft and hard pieces of private information about their character-

istics. Methodologically, our approach differs from Myersonian techniques that rely

on virtual surplus and work directly with the allocation rule. By contrast, we use

cumulative surplus and work with the derivative of the allocation rule to identify the

growth interval, which is the region of scores where the allocation probability must

be distorted from the first best to prevent falsification.

In our setting, there are no transfers and targeting is enabled by the availabil-

ity of the (possibly falsified) score. Thus, we contribute to a substantial literature

on non-market optimal allocation mechanisms, which studies the use of alternative

targeting tools in lieu of transfers. Ben-Porath, Dekel, and Lipman (2019) rely on evi-

dence disclosure. Ben-Porath, Dekel, and Lipman (2014), Lipman (2015), Mylovanov

and Zapechelnyuk (2017), Erlanson and Kleiner (2019), Chua, Hu, and Liu (2019),

Epitropou and Vohra (2019) and Li (2020) use ex-post (costly) inspection or verifica-

tion with limited penalties. Hartline and Roughgarden (2008) and Dworczak (2022)

consider money (or utility) burning, while Patel and Urgun (2023) combines verifi-

cation and money burning. In Kattwinkel (2019), the designer has access to private

information correlated with the private information of the agent, while in Kattwinkel

and Knoepfle (2022) she can additionally verify the agent’s type. In contrast, we

consider costly state falsification and impose falsification-proofness. It is similar to

money burning in the sense that it is wasteful, but differs in that burnt utility through

falsification is type-dependent.

We also contribute to the literature on costly screening by deriving optimal alloca-

tion mechanisms. Frankel and Kartik (2021) and Ball (2022) study the optimal design

of linear scores under a gaming technology that amounts to costly state falsification.

Landier and Plantin (2016) characterize optimal tax design under costly income hid-

ing. Kephart and Conitzer (2016), Deneckere and Severinov (2022) and Severinov

and Tam (2019) study mechanism design with misreporting costs but focus on set-

tings (mainly with transfers) in which falsification-proofness is without loss. Lacker

and Weinberg (1989) investigate the design of risk sharing contracts with costly state

falsification focusing on optimal falsification-proof contracts, and are the first to show

the constraint may lead to a loss of optimality without characterizing the optimal

contract. We build on Perez-Richet and Skreta (2022), where we show that inducing
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falsification is necessary for allocative optimality. Unlike Perez-Richet and Skreta

(2022), in this study, we allow for agent heterogeneity in other dimensions than score,

introduce public labels, and require falsification-proofness.

In practice, the design of allocation rules based on scores may incentivize both true

improvements and score manipulations. For example, awarding green certificates to

low-emitting firms may prompt them to engage in both greenwashing and abatement.

In a related framework, Augias and Perez-Richet (2023) study the optimal design

of allocation mechanisms when agents can improve their score. In this paper, by

contrast, manipulations are socially purely wasteful and merely burn utility. Examples

of such wasteful activities include wait-list manipulations in the context of organ

transplants studied in Schummer (2021) or priority manipulations in school choice

settings (Pathak and Sönmez, 2008; He, 2015).

Our analysis introduces novel connections to the literature using optimal trans-

portation theory in economics surveyed in Carlier (2012) and Galichon (2018). More

recently, optimal transport theory has been applied to mechanism design problems

with multidimensional private information (Daskalakis, Deckelbaum, and Tzamos,

2017; Kolesnikov, Sandomirskiy, Tsyvinski, and Zimin, 2022), information design

(Arieli, Babichenko, and Sandomirskiy, 2022; Kolotilin, Corrao, and Wolitzky, 2022;

Lin and Liu, 2022; Malamud and Schrimpf, 2021), and labor market sorting problems

(Boerma, Tsyvinski, and Zimin, 2021). Most of these papers rely on generalizations

of duality characterizations in transportation theory.8 By contrast, in this paper we

map the designer’s allocation problem to the dual of a Monge-Kantorovic problem

by changing variables and by constructing the marginal distributions so that they

reflect the social surplus generated from allocating an object. Such a transformation

is novel within the mechanism design paradigm and it allows us to obtain an analyt-

ical solution to a mechanism design problem with a continuum of binding non-local

constraints under minimal assumptions. Thus, our analysis provides new methods

and tools complement both the Myersonian techniques in settings with transfers, and

the Lagrangian techniques in settings without transfers as in Amador, Werning, and

Angeletos (2006) and Amador and Bagwell (2022).

8For example, Lin and Liu (2022) rely on characterization properties of the optimal coupling for
given marginals to establish their characterization of stable credible signals.
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2 The allocation problem

Framework. The designer seeks to allocate a mass ρ̄ ≤ 1 of indivisible and homo-

geneous objects to a unit mass of heterogeneous agents without transfers.

Each agent is characterized by a private type θ =
(
i, s, k

)
, and a scalar w which

captures their worthiness, that is the social value (or the designer’s value) of allocating

an object to them. Without loss of generality, the value of the outside option (not

allocating) is normalized to 0 for each object. Agents may know their worthiness

(if θ is a sufficient statistics for w) or not. The first dimension of the type, i ∈ I,

encompasses all relevant publicly observable and unfalsifiable (or too costly to falsify)

characteristics of an agent. We refer to i as the agent’s group, and assume I is a finite

set. The mass of group i is µi > 0, where
∑

i µi = 1. We assume existence of an

exogenous one-dimensional metric, the score, measuring some private characteristics

of the agent. The second dimension, s ∈ Si ⊆ R is the agent’s natural score, which

she obtains when she does not interfere with the measuring technology and is costly

to falsify. The agent may indeed manipulate her score so the designer observes a

falsified score t instead of her natural score s. The last dimension of type, k, is

soft information and can be misrepresented without cost. It is a vector of privately-

known characteristics that may include the agent’s value for the good v > 0, as well

as all privately known abilities affecting her falsification cost, and may also include

characteristics correlated with her worthiness.

Distributional assumptions. Each agent draws a vector of characteristics (θ, w)

i.i.d. from a joint distribution. Hence the different dimensions of an agent’s vector

of characteristics can be, and typically are, correlated; but they are independent

from other agents’ characteristics. We let Fi denote the cumulative score distribution

function conditional on i, which we assume to have full support on an interval Si =

[si, si], and no atoms. Conditional on (i, s), the remainder of the type vector is fully

supported on Ki,s, a compact and convex subset of Rp.

Designer and agent payoffs. We assume that, conditional on (i, s), social worthi-

ness w is bounded and integrable, and denote the corresponding expected worthiness

by wi(s) = E(w|i, s) and by w̄i = E(w|i) the expected worthiness in group i. The

designer’s payoff from assigning an object to an agent from group i with score s is

wi(s). We assume score and worthiness are positively related in the sense that, for

every group i, wi(s) is strictly increasing. An agent’s payoff depends on whether or

not they obtain an object minus any incurred falsification cost: αv−C(t, θ) where α
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is the probability of getting an object and C : S ×Θ→ R+ defines the cost for type

θ to present a score t ∈ S.

We assume not falsifying is costless so, given an agent’s type θ = (i, s, k), C(s, θ) =

0. It is important to note that the cost of score t depends not only on the natural

score s but also on k, capturing aspects such as gaming ability or discomfort from

lying. The falsification cost may reflect technical costs, psychological lying costs as

well as expected penalties for gaming. In the remainder of the paper, we employ the

falsification terminology and refer to the falsification technology and the falsification

cost.

Falsification-proof mechanisms. We restrict the designer to falsification-proof

mechanisms, that is, mechanisms that incentivize agents to submit their natural score.

Under this assumption, it is without loss of generality to restrict attention to a score-

based allocation rules α = (αi)i∈I , where αi : Si → [0, 1] is the probability that an

object is allocated to an agent from group i conditional on a score. The restriction

to score-based allocation rules entails two simplifications. First the mechanism relies

on observable information: the group identity and a score submitted by the agent. It

therefore cannot rely on agents’ soft information, such as valuations or gaming abili-

ties contained in the vector k. Moreover, score-based allocation rules do not rely on a

mediator (communication protocol). Agents simply decide which score(s) to submit

as a function of their type θ. Therefore, while it might have been desirable to have

a mechanism that distinguishes among agents with different valuations and gaming

abilities, this is not possible because, roughly, all types conditional on submitting the

same score would claim the characteristics leading to the highest allocation probabil-

ity.9 The second simplification is that an agent’s allocation probability is based solely

on her score, and not on the score profile of other agents, so the continuum of agents

is essentially treated as a single agent. This is again without loss is as we explain in

Appendix D.

For agents within a group i with the same natural score falsification is more tempt-

ing for those with the highest valuation and lowest falsification costs. Therefore, a

9For further details see Proposition 2 and Corollary 1 in Perez-Richet and Skreta (2023) where we
study an abstract mechanism design setting in which agents have soft and hard private information
and establish conditions under which soft dimensions (e.g., tastes, abilities) that can be costlessly
misrepresented cannot be elicited and the mechanism can only rely on hard dimensions (e.g., scores)
that can be falsified at a cost.
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mechanism is falsification-proof if and only if it satisfies the following constraint10

∀(i, s, t) αi(t)− αi(s) ≤
1

γi
ci(t|s), (FPC)

where 1
γi
ci(t|s) := infk∈Ki,s

1
v
C(t, θ) and it stands for the least cost-to-value ratio of

falsifying to t for agents with natural score s in group i. We refer to 1
γi
ci(t|s) as the

least cost, or even the cost of group i given that this is the cost that matters to ensure

falsification-proofness. The infimum exists because C(t, θ) is bounded below by 0. We

assume this bound is tight in the sense that, for each t and every ε > 0, there exists a

positive mass of agents from group i with natural score s whose cost of falsifying to t

is lower than 1
γi
ci(t|s)+ ε. We use the scalar γi > 0 to study comparative statics with

respect to changes in the least-cost function, and refer to it as the gaming ability of

group i.

Falsification costs and technologies. We proceed to list some properties and

assumptions we impose on falsification costs. We assume the least-cost function is

monotonic for upward falsifications: if t ≥ s, then ci(t|s) is (locally) strictly increasing

in t and −s. We also assume least-cost functions satisfy the following regularity

assumption.

Definition 1 (Regularity). A cost function c(t|s) is regular if it is continuously dif-

ferentiable in t on [s, s], and in s on [s, t], and there exists Λ > 0 such that, for every

s, t, c(t|s) ≤ Λ|t− s|.

We denote the partial derivatives of a regular cost function by ct(·|·) and cs(·|·).

Depending on the context, the cost function may take different forms, so it is useful to

rely on flexible assumptions. We characterize optimal allocation rules for the following

two distinct and salient classes of cost functions

Definition 2 (Upward Differences). A cost function c(t|s) has upward increasing

differences if

∀s < s′ ≤ t < t′, c(t′|s′)− c(t|s′) ≥ c(t′|s)− c(t|s), (UID)

and upward decreasing differences if

∀s < s′ ≤ t < t′, c(t′|s′)− c(t|s′) ≤ c(t′|s)− c(t|s). (UDD)
10Interestingly, we can also interpret (FPC) as being motivated by inequality awareness as in

Akbarpour et al. (2020). The cost γ−1
i ci(t|s) then acts as a bound on allocative inequality between

score pairs s and t. We thank Ricardo Alonso for suggesting this interpretation.
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These conditions only bear on upward falsification because we show downward

falsification is never beneficial under optimal allocation rules. To gain intuition about

the interpretation of the conditions from Definition 2, it is useful to consider the

family of Euclidean cost functions, c(t|s) = C(|t − s|), where C : R+ → R+ is an

increasing function such that C(0) = 0 A Euclidean cost function satisfies (UID) if

C is concave (or, more generally, subadditive), and (UDD) if C is convex (or, more

generally, superadditive). Reasoning as if c were an agent’s cost function instead

of the least cost, for the sake of intuition, the monotonicity of upward differences

captures economies of scale in the amount of falsification |t−s|: increasing differences

correspond to increasing returns to scale, and decreasing differences to decreasing

returns to scale. At the end of this section we discuss economic settings that we expect

costs to satisfy (UID) and ones where (UDD) seems a more reasonable specification.

Allocative constraints. We allow for a resource constraint and quota constraints.

A mechanism is feasible if it satisfies these allocative constraints. The resource con-

straint requires
∑

i

µi

∫ si

si

αi(s)dFi(s) ≤ ρ̄. (RC)

In addition, the designer may have to satisfy a system of exogenous quotas φ =

(φi)i∈I , where φi ∈ [0, 1] is a fraction of objects reserved for group i, with
∑

i φi ≤ 1,

and φiρ̄ ≤ µi. The quota constraints are

∀i, µi

∫ si

si

αi(s)dFi(s) ≥ φiρ̄. (QC)

Feasible mechanisms also satisfy probability constraints:

∀(i, s) 0 ≤ αi(s) ≤ 1. (PC)

Designer’s program. The restriction to falsification-proof mechanisms implies the

agent’s observed score is the natural one, so αi writes as function on the natural score

s rather than a score t∗(s) that an agent could falsify to. The designer’s program is

to choose a score-based allocation rule α that solves:

max
(αi)i∈I

∑

i

µi

∫

Si

wi(s)αi(s)dFi(s) (DP)

s.t. (PC), (FPC), (RC), and (QC).
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Applications Our setting fits a number of practically important allocation setting.

We discuss two of them in order to illustrate key components of the model.

Human organs. In this setting an agent’s natural score is the true severity of

their health while the falsified score is the one based on the inflated severity of the

condition. Manipulation happens by putting patients on escalated treatments and,

sometimes, by submitting a false diagnosis. Falsification costs involve the expected

consequences from the physician being caught and the side effects that the escalated

treatment has in addition to any monetary costs. These costs can be estimated.

Finding a doctor willing to escalate the treatment and the potential direct (bribes)

or other extra monetary costs (higher compensation because this doctor is outside

the agent’s insurance network) suggest that the cost from zero falsification to a small

amount increases quickly but then rate of increase slows down as the setup is in

place. Therefore, for such a setting falsification costs satisfy (UID) seem plausible.

Given the backslash caused by the uncovered fraud in Germany described in the

introduction and similar concerns in other countries, falsification-proofness seems a

natural desideratum especially since falsification in such settings has been suspected

to increase fatalities and severely jeopardized the system. A system that relies on

falsification is unfair as it favors agents with high gaming abilities and it ends up

allocating precious organs to patients with lower needs who have access to superior

gaming options.

School seats. In a school allocation setting, an agent’s natural score is the

priority based on their actual address and presence of siblings in the school whereas

the falsified score is based on fake characteristics. Falsification costs reflect expenses

of renting an apartment closer to the school or finding someone willing to change the

name on their utility bills in exchange of paying those bills. Falsification costs could

also include the anticipated increase in commuting time and distance from school

friends which would be inferred through travel times from public data. Oftentimes

such costs are convex and strictly so reflecting the time constraints during rush-hour

when parents need to drop-off several children and arrive to work on time, thus for

this setting the specification of (UDD) could be suitable. Finally, in school choice

settings, falsification proofness has been advocated as a mechanism desideratum as

underscored by Abdulkadiroğlu and Sönmez (2003) and Pathak and Sönmez (2013).

Why falsification proofness? Falsification proofness is desirable in practice for

the reasons laid out in the introduction. Falsification-proof mechanisms do not burden
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agents with falsification costs.11 They are fair in the sense that all agents that belong

in the same group with the same natural score enjoy the same allocation probabil-

ity. It is easy to show that faced with mechanisms that rely on falsification, agents

with higher gaming ability enjoy a higher allocation probability ceteris paribus. In

addition, agents with lower gaming abilities burn relatively more utility compared

to agents with higher gaming ability. Furthermore, the characterization of optimal

falsification-proof mechanisms is an important theoretical and practical benchmark.

Their characterization can be leveraged and modified to solve intermediate cases where

some falsification could be tolerated.

3 Baseline problem

In this section, we solve a baseline program that focuses on the falsification-proofness

constraint. We abstract from all allocative constraints and for notational simplicity

treat all agents as if they belong in a single group. In the baseline program, the

social value is w(s)− ŵ where ŵ is an exogenous outside option value. The baseline

problem focuses on the key difficulties of the designer’s problem which stem from the

falsification-proofness constraint. Its solution gives a designer-optimal allocation for

a fixed outside option. To solve the designer’s overall problem, we then select group-

specific outside options to satisfy the allocative constraints (RC) and (QC). This last

step is relatively straightforward after obtaining the solution to the baseline problem,

which as the analysis that follows highlights, is technically much more involved.

We proceed to state and solve the baseline problem (P̃):

max
α

∫

S

α(s){w(s)− ŵ}dF (s) s.t. (FPC), (PC), (P̃)

The first-best, that is the solution to the baseline problem in the absence of the

falsification-proofness constraint, is to allocate with certainty to scores above the

eligibility threshold ŝ and with null probability to scores below. When falsification is

possible, however, the discontinuity of the first-best allocation rule at ŝ would lead

agents just below to falsify to ŝ.

11Perez-Richet and Skreta (2022) do not impose falsification proofness and show that the designer
optimal test involves falsification costs that impose a significant burden on agents. Figure 4 in Perez-
Richet and Skreta (2022) illustrates that the associated payoffs are not on the Pareto frontier. By
contract, falsification proof tests are–by definition–Pareto optimal because they do not impose any
costs on the agents.
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3.1 Simplifying the baseline problem: differential program

In this section, we simplify the problem by showing that we can restrict attention to

monotonic and smooth allocation rules. We then use these properties to express the

designer’s objective in terms of the derivative of the allocation rule and the cumulative

social surplus obtaining a differential program. This reformulation is analogous in

spirit to obtaining the seller’s revenue in terms of the product of the allocation rule

and buyer’s virtual valuations in standard settings with transfers. We proceed to

solve the differential program for falsification cost functions that satisfy (UID) in

Section 3.2 and costs that satisfy (UID) in Section 3.3.

Smoothness and monotonicity of optimal allocation rules. Discontinuities

in the allocation rule generate falsification. To prevent it, an allocation rule must

therefore be continuous. More generally, it must inherit some of the regularity of the

cost function. In our case, the regularity assumption on the cost function combined

with the falsification-proofness constraint (FPC) directly imply Lipschitz continuity

of any feasible allocation rule.

Given the score-monotonicity of expected worthiness, it is natural to expect op-

timal allocation rules must be monotonic. Indeed, by replacing any nonmonotonic

feasible allocation rule α by the highest monotonic allocation rule everywhere below

α to the left of the eligibility threshold ŝ, and by the lowest monotonic allocation

rule everywhere above α to the right of ŝ, we obtain a monotonic allocation rule that

remains feasible and strictly increases social surplus as it increases the probability

of allocation for scores with positive social surplus, and decreases it for scores with

negative social surplus.12

Monotonicity implies downward falsification-proofness constraints are satisfied, so

we only retain upward constraints. Lipschitz and monotonic continuous allocation

rules are almost everywhere differentiable, with derivative α′ bounded on the interval

[0,Λ/γ]. Furthermore, we can rewrite them according to either of the following integral

decompositions

α(s) = α+

∫ s

s

α′(z)dz (ID)

= α−

∫ s

s

α′(z)dz, (ID)

where α = α(s) and α = α(s). In particular, we can rewrite the baseline program as

12These results are formally stated and proved in Lemma A.4 of the Appendix.
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an optimization problem over the bounded function α′(s) and either of the scalars α

or α, instead of optimizing directly on α. We call any program obtained this way a

differential form of the baseline program, or for convenience a differential program.

Cumulative surplus functions. Before writing the differential form of the baseline

program, we introduce cumulative surplus functions to help us interpret the equations.

The upward cumulative surplus is the total amount of social surplus contained above

some cutoff s, and it corresponds to the marginal gain of uniformly increasing the

allocation probability of all scores above s:

W+(s, ŵ) =

∫ s

s

{
w(x)− ŵ

}
dF (x).

When using (ID), and constructing the allocation rule from the left, locally increasing

the allocation probability at z by α′(z)dz has a marginal social gain of W+(z, ŵ).

Indeed, this is reflected into the equations by replacing α with (ID) in the designer’s

objective, and integrating by parts, which yields the differential objective function

(w̄ − ŵ)α +

∫ s

s

α′(z)W+(z, ŵ)dz. (DOF)

The downward cumulative surplus is the total amount of negative social surplus con-

tained below some cutoff s, and corresponds to the marginal gain of uniformly de-

creasing the allocation probability of all scores below s:

W−(s, ŵ) = −

∫ s

s

{
w(x)− ŵ

}
dF (x) =W+(s, ŵ)−

(
w̄ − ŵ

)
.

When using (ID), locally decreasing the allocation probability at z by α′(z)dz has a

marginal social gain of W−(z, ŵ). Rewriting the designer’s objective function with

(ID) and integration by parts then yields

(w̄ − ŵ)α +

∫ s

s

α′(z)W−(z, ŵ)dz. (DOF)

Group priorities. We say the group has high priority if expected worthiness w̄ =

E(w) exceeds the outside option ŵ and low priority if w̄ < ŵ. In case of equality,

w̄ = ŵ, we say the group has neutral priority. We let ŝ denote the eligibility threshold

at which the social value is equal to the outside option value w(ŝ) = ŵ. We refer to

the quantity w(s)− ŵ as the social surplus (from allocation). It is positive above, and
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negative below ŝ. Intuitively, priority determines whether it is more important for the

designer to avoid allocation errors for high-score agents (in high priority groups), or

low-score agents (in low-priority groups). Indeed, in the absence of information about

score, the designer would allocate all objects randomly to agents in a high-priority

group, and retain all objects when facing a low-priority group. Hence, the designer

should set α = 1, and construct the test from the right, in high priority groups, but

set α = 0, and construct the test from the left, in low priority groups. This intuition

is confirmed by considering, respectively, (DOF) for a high priority group, and (DOF)

for a low priority group. Under neutral priority, the first term is null in both (DOF)

and (DOF), so either approach can be used, and the particular choice of allocation

probability at the top or the bottom is irrelevant.

In what follows, we use different notions of cumulative surplus depending on group

priority. Hence, it is useful to define a composite cumulative surplus function that

encompasses both cases:

W(z, ŵ) =W+(z, ŵ)1w̄<ŵ+W
−(z, ŵ)1w̄≥ŵ .

Cumulative surplus and matching scores. The following lemma lists important

properties of the cumulative surplus function which are illustrated on Figure 2.

Lemma 1 (Properties of cumulative surplus). The cumulative surplus functionW(·, ŵ)

is continuous and single-peaked at ŝ. For every ν ∈ [0,W(ŝ, ŵ)], there exist unique

scores s∗(ν) ≤ ŝ ≤ s∗(ν) such that W
(
s∗(ν), ŵ

)
=W

(
s∗(ν), ŵ

)
= ν. Furthermore:

(i) W(s, ŵ) ≥ ν if and only if s ∈
[
s∗(ν), s

∗(ν)
]
,

(ii) s∗(ν) and −s
∗(ν) are continuous and increasing functions,

(iii) s∗(0) = s under low and neutral priority, and s∗(0) = s under high and neutral

priority,

(iv) For all ν ∈ [0,W(ŝ, ŵ)], E
(
w|s∗(ν) ≤ s ≤ s∗(ν)

)
= ŵ.

These properties allow us to define the decreasing matching functionm : [s∗(0), ŝ]→

[ŝ, s∗(0)] that to each s ∈ [s∗(0), ŝ] associates the score m(s) ∈ [ŝ, s∗(0)] such that

W(s, ŵ) = W
(
m(s), ŵ

)
. We say a pair (s∗, s

∗) is a matching pair if s∗ = m(s∗). By

point (iv) of Lemma 1, matching pairs characterize the set of intervals [s∗, s
∗] around

ŝ that satisfy the following Zero Average Social Surplus condition

E

(
w − ŵ|s∗ ≤ s ≤ s∗

)
= 0. (ZASS)

17



−1 1
ŝ

W =W+

ν

s∗(ν) s∗(ν)

m(·)

F=U([−1,1]), w(s)=s, ŵ=1/4

Low Priority

−1 1
ŝ

W =W−

ν

s∗(ν)s∗(ν)

m(·)

F=U([−1,1]), w(s)=s, ŵ=−1/4

High Priority

Figure 2: Cumulative surplus, matching pairs and growth interval.

Using the differential program, which we derive in the next paragraph, we show pos-

sible growth intervals are characterized by this condition.

Differential program. We proceed to state a differential program that is common

for low and high priority groups.

Lemma 2 (Differential program). In (P̃), it is optimal to set α = 0 if the group has

low priority, and α = 1 if the group has high priority. Under neutral priority, either

choice works. In all cases, the differential program simplifies to

max
α′

∫ s

s

α′(z)W(z, ŵ)dz

s.t.

∫ s

s

α′(z)dz ≤ 1 (DPC)

∫ t

s

α′(z)dz ≤
1

γ
c(t|s), ∀s < t (DFPIC)

0 ≤ α′(s), ∀s. (DMC)

To complete the argument, we need to ensure the choices of α = 0, or α = 1

do not tighten the constraints. The differential falsification-proofness constraint is

written as (DFPIC) in all cases and is therefore unaffected by these choices, whereas

the differential probability constraint can be written either as α +
∫ s

s
α′(z)dz ≤ 1, or

as α−
∫ s

s
α′(z)dz ≥ 0. Hence, setting either α = 0 under low priority, or α = 1 under

high priority relaxes the probability constraint, and collapses it to (DPC) in all cases.

We have also added the differential monotonicity constraint (DMC) since it must be

satisfied by optimal allocation rule.
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Probability constraint, growth interval, and simplified program. The sec-

ond step of simplification allows us, first, to relax the probability constraint by con-

sidering the corresponding Lagrangian, and, second, to argue solutions to (P̃) must

be constant outside of a growth interval. We then show possible growth intervals are

nested intervals characterized by the Zero Average Social Surplus condition (ZASS).

To construct a solution, we solve the relaxed problem reduced to a growth interval,

that is, ignoring scores that lie outside of the growth interval. We call the resulting

program a simplified problem, and show how to construct a solution to (P̃) by solving

the simplified problem.

The probability constraint (DPC) bounds the total growth of the allocation rule

and therefore determines growth intervals. Let ν ≥ 0 be the Lagrange multiplier on

this constraint. The Lagrangian of the differential program is then

L(α, ν) =

∫ s

s

α′(z)
{
W(z, ŵ)− ν

}
dz + ν.

By Lemma 1, (i), maximizing this Lagrangian under (DMC) implies setting α′(s) =

0 for a.e. s outside of the growth interval
[
s∗(ν), s

∗(ν)
]
(see Figure 2 for an illustra-

tion). In particular, this implies growth intervals must be defined by matching pairs,

or equivalently they must satisfy the (ZASS) condition. Since the Lagrange multi-

plier is non-negative, the growth interval must be contained in [s∗(0), s
∗(0)], implying

growth intervals also satisfy the following principle: In low priority groups, scores

in the interval [s, s∗(0)] must receive the good with null probability, whereas in high

priority groups, scores in the interval [s∗(0), s] must receive the good with probability

one. For easy reference, we call this principle Extreme Score Error Avoidance (ESEA).

Under low or high priority the (ESEA) principle is asymmetric, and avoiding errors

at one extreme may come at the cost of making errors at the other extreme. Under

neutral priority, [s∗(0), s
∗(0)] = [s, s], and the designer is indifferent between errors at

the top and at the bottom.

Combining these observations and a Lagrange necessity and sufficiency result (see

Lemma A.5 in Appendix for a precise statement), we show it is possible to construct

a solution to the within problem by following the ensuing procedure which focuses on

solving a simplified program which stems from the baseline program by: (i) reducing

it to growth intervals, and (ii) relaxing the probability constraint:

Procedure 1 (From the simplified problem to the baseline problem). To construct
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an optimal allocation rule for (P̃), consider the simplified program:

max
α(s)∈R

∫ s∗

s∗

{
w(s)− ŵ

}
α(s)dF (s)

s.t. α(t)− α(s) ≤
1

γ
c(t|s) ∀s∗ ≤ s < t ≤ s∗

where (s∗, s
∗) is a matching pair, and proceed as follows:

• Step 1. Find a solution α of the simplified program for any matching pair

(s∗, s
∗). Note that such a solution is always determined up to addition of a

constant.

• Step 2. Choose the pair (s∗, s
∗) so either (i) the probability constraint binds if

possible: α(s∗)−α(s∗) = 1, or (ii) according to the (ESEA) principle: (s∗, s
∗) =

(
s∗(0), s

∗(0)
)
.

• Step 3. Set the additive constant so α(s∗) = 0 in a low priority group, or

α(s∗) = 1 in a high priority group.

• Step 4. Complete the allocation rule by setting α(s) = α(s∗) for all s < s∗,

and α(s) = α(s∗) for all s > s∗.

⋄

Hence, to construct a solution of (P̃), we first solve the simplified program on

all possible growth intervals, and then choose the growth interval to be either one

that saturates the probability constraint, if possible, or, otherwise, to be the largest

possible growth interval [s∗(0), s
∗(0)].

Next, we follow Procedure 1 to obtain the optimal allocation rule for the baseline

program. The only remaining constraints are the falsification-proofness constraints.

The binding ones determine the shape of the allocation rule over the growth interval.

We characterize optimal allocation rules under (UID) and (UDD). Under (UDD),

the falsification-proofness constraints bind locally, so the problem is easily solved

using a first-order approach. Under (UID), in contrast, the falsification-proofness

constraints bind for far apart scores, making the first-order approach inadequate.

Instead, we solve the program by drawing a novel connection with the dual problem

of the Monge-Kantorovitch optimal transport problem.
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3.2 Upward increasing differences

Optimal allocation through optimal transportation. We start by drawing a

connection between the simplified program and optimal transport theory. For that, let

the pair (s∗, s
∗) define a possible growth interval. We consider the following relaxation

of the reduced problem on [s∗, s
∗]:

max
α

∫ ŝ

s∗

α(s){w(s)− ŵ}dF (s) +

∫ s∗

ŝ

α(t){w(t)− ŵ}dF (t)

s.t. α(t)− α(s) ≤
1

γ
c(t|s), ∀s∗ ≤ s ≤ ŝ ≤ t ≤ s∗,

in which we only require (FPC) to hold for scores below the eligibility threshold ŝ

targeting scores above that threshold. We have also separated the objective function

between scores below and above that threshold.

In our formulation of the model, we have masses of agents distributed over the

space of scores, which we can think of as locations, each endowed with a certain social

surplus. Alternatively, we can view the problem in terms of masses of negative or

positive social surplus distributed at the different locations. Each location s then

harbors a mass |w(s)− ŵ|dF (s) of negative social surplus below, and positive social

surplus above ŝ. We frame the program as a problem involving the transportation of

negative social surplus to locations that harbor positive social surplus.

To see that, we start by changing the variables of this problem to identify scores (or

locations) by their distance to the eligibility threshold, letting y = ŝ−s for s ≤ ŝ, and

z = t− ŝ for t ≥ ŝ. These variables belong, respectively, to the space of negative social

surplus locations Y = [0, ŝ − s∗], and the space of positive social surplus locations

Z = [0, s∗ − ŝ]. By the (ZASS) principle, each of these spaces harbors the same mass

of social surplus. We endow each of them with a probability distribution measuring

the fraction of this total mass of surplus, as given by the cumulative density functions

P (y) =
W(ŝ, ŵ)−W(ŝ− y, ŵ)

W(ŝ, ŵ)−W(s∗, ŵ)
,

and

Q(z) =
W(ŝ, ŵ)−W(ŝ + z, ŵ)

W(ŝ, ŵ)−W(s∗, ŵ)
,

where the normalizing factors are equal by (ZASS). Note that dP (y) ∝ |w(ŝ− y)−

ŵ|dF (ŝ− y), and dQ(z) ∝ |w(ŝ+ z)− ŵ|dF (ŝ+ z).

Finally, we rewrite allocation probabilities as location specific prices φ(y) = α(ŝ−
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y), and ψ(z) = α(ŝ + z) so the program becomes (up to multiplication by the nor-

malizing factor of P and Q)

max
φ,ψ

∫

Z

ψ(z)dQ(z) −

∫

Y

φ(y)dP (y)

s.t. ψ(z)− φ(y) ≤
1

γ
c(ŝ+ z|ŝ− y) ∀y, z.

To view this program in terms of transportation, suppose the designer is a plan-

ner who wants to support production of a locally produced good (social surplus) at

locations in Z, but discourage it at locations in Y . As a result, she wishes to maxi-

mize the profit of producers at locations in Z, but minimize the profit of producers in

Y . The good costs nothing to produce, but can only be produced in quantity dQ(z)

at z ∈ Z, and dP (y) at y ∈ Y . Suppose demand exceeds supply at every location

and the economy is entirely regulated so the planner can choose the price at which

the good can be sold at each location. However, producers in Y can be tempted to

transport their production to locations in Z at a cost if they can profit from it. The

designer should then naturally be interested in the least costly routes between Y and

Z. Indeed, her program is actually the dual of the optimal transport problem, which

seeks to find the least costly way of transporting P to Q:

min
ζ∈M(P,Q)

1

γ

∫

Y×Z

c(ŝ+ z|ŝ− y)dζ(y, z),

whereM(P,Q) is the set of joint distributions on Y ×Z with marginals P on Y , and

Q on Z.

The optimal allocation rule. By (UID), the transportation cost c(ŝ+ z|ŝ− y) is

submodular on Y ×Z. Under this condition, it is well known from optimal transport

theory13 that the optimal transportation plan is assortative, and precisely given by

the matching function m: all surplus at y is transported to location z such that

ŝ+z = m
(
ŝ−y). In terms of our original problem, this implies the binding falsification-

proofness constraints are between scores s ∈ [s∗, ŝ], and their matching score t = m(s).

Optimal transport theory also provides us with closed form formulas for the optimal

price functions φ and ψ, which are uniquely determined up to a constant. We then

obtain the optimal allocation rule by following Procedure 1. It is slightly difficult to

parse, so we first give the formula, and then explain its different terms:

13All relevant results from optimal transport theory can be found in Galichon (2018, chapter 4).
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α∗
uid(s, ŵ, r) =







0 if s < s∗

ΓuidI(ŵ, r)−
1
γ

∫ s

s∗
cs
(
m(x)|x

)
dx if s ∈ [s∗, ŝ]

1− ΓuidĪ(ŵ, r)−
1
γ

∫ s∗

s
ct
(
x|m−1(x)

)
dx if s ∈ [ŝ, s∗]

1 if s > s∗

.

On the growth interval, the allocation rule grows at speed − 1
γ
cs
(
m(x)|x

)
for scores

x below the eligibility threshold, and at speed 1
γ
ct
(
x|m−1(x)

)
for scores x above the el-

igibility threshold. Duality in the optimal transport problem implies the falsification-

proofness is binding between matching scores, and in particular for the pair (s∗, s
∗),

so

α∗
uid(s

∗, ŵ, r)− α∗
uid(s∗, ŵ, r) =

1

γ
c
(
s∗|s∗

)
.

Therefore, the growth interval [s∗, s
∗] is pinned down by two equations: first, the

(ZASS) condition, s∗ = m(s∗), and, second, the boundary condition

s∗ = min
{
s ∈ [s∗(0), ŝ] : c

(
m(s)|s

)
≤ γ

}
, (Buid)

which uniquely pins down the growth interval, and the corresponding Lagrange mul-

tiplier ν =W(s∗, ŵ). The boundary condition makes the probability constraint bind

if possible, and otherwise picks the largest possible growth interval [s∗(0), s
∗(0)], and

ν = 0.

Letting γ0uid = c
(
s∗(0)|s∗(0)

)
, (Buid) implies the probability constraint is binding

if the gaming ability is sufficiently low, that is γ ≤ γ0uid. If instead γ > γ0uid, the

probability constraint does not bind and there exists a positive probability gap. Γuid ∈

[0, 1] measures the size of the probability gap, it is equal to 0 if γ ≤ γ0uid, and is positive

otherwise,

Γuid = 1−
1

γ
c(s∗|s∗). (Guid)

Finally I(ŵ, r) = 1ŵ>w̄+ r1ŵ=w̄, and Ī(ŵ, r) = 1− I(ŵ, r), with r ∈ [0, 1]. I(ŵ, r)

is an indicator whose role is to allocate the probability gap so as to satisfy the (ESEA)

principle, that is: Under low priority, the probability gap is kept from the agents to

ensure low-score agents do not receive an object, I(ŵ, r) = 0. Under high priority,

the probability gap is allocated to the agents to ensure high-score agents get the good

with certainty, I(ŵ, r) = 1. This only matters if the probability constraint is not

binding so Γuid > 0, that is, if gaming ability is sufficiently high γ > γ0uid.
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Under neutral priority, when positive, the probability gap can be allocated in any

way, and I(w̄, r) = r ∈ [0, 1] is then the share of the probability gap that is allocated

to the agents: that is, all scores receive the good with probability at least rΓuid. Note

that γ0uid is a function of ŵ, and when ŵ = w̄ the interval [s∗(0), s
∗(0)] is equal to the

full support [s, s]. Therefore we define γ̄uid = c(s|s) to be the gaming ability threshold

in this case. The condition for a slack probability constraint, and therefore a strictly

positive probability gap under neutral priority is then γ > γ̄uid. In this case, there

are multiple solutions and the set of optimal allocation rules is indexed by the choice

of r ∈ [0, 1]. If ŵ 6= w̄ or γ ≤ γ̄, the solution of the baseline problem is unique and

the allocation rule is independent of r.

Theorem 1 (Solution of baseline problem under (UID)). If the cost function satisfies

(UID), then α∗
uid(s, ŵ, r) is an optimal allocation rule for (P̃). Furthermore, it is the

unique optimal allocation rule, and it is independent of r under non-neutral priority

(ŵ 6= w̄), or if gaming ability is sufficiently low, γ ≤ γ̄uid. Otherwise, the set of

optimal allocation rules is
{
α∗
uid(s, w̄, r)

}

r∈[0,1]
.

To complete the proof of the theorem, we show in the appendix that the relaxed

falsification-proofness constraints between scores on the same side of the eligibility

threshold ŝ are indeed satisfied by α∗
uid, which is a consequence of (UID).

3.3 Upward decreasing differences

Under (UDD), the falsification-proofness constraint can be replaced by the first-order

condition for α(t)− 1
γ
c(t|s) to be maximized at s, which is

α′(s) ≤
1

γ
ct+(s|s),

where ct+(s|s) is the right-derivative of c with respect to target t evaluated at t = s.

Therefore, the simplified problem in its differential form is

max
0≤α′(s)≤ 1

γ
c
t+

(s|s)

∫ s∗

s∗

[
W(s, ŵ)− ν

]
α′(s)ds,

where ν =W(s∗, ŵ) =W(s∗, ŵ). Since W(s, ŵ)− ν > 0 on the interior of [s∗, s
∗], the

only solution is to set α′(s) = 1
γ
ct+(s|s) for almost every s. Then, using Procedure 1
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to build the unique optimal allocation rule, we obtain:

α∗
udd(s, ŵ, r) =







0 if s < s∗

ΓuddI(ŵ, r) +
1
γ

∫ s

s∗
ct+(x|x)dx if s ∈ [s∗, s

∗]

1 if s > s∗

.

On the growth interval, the allocation rule grows at speed ct+(x|x) at score x. The

growth interval [s∗, s
∗] is pinned down by the (ZASS) condition, s∗ = m(s∗), and the

boundary condition

s∗ = min

{

s ∈ [s∗(0), ŝ] :

∫ m(s)

s

ct+(x|x)dx ≤ γ

}

(Budd)

plays the same role as in the (UID) case: it picks a value14 of the Lagrange multiplier

that makes the probability constraint bind, or otherwise sets ν = 0.

The probability gap is now given by

Γudd = 1−
1

γ

∫ s∗

s∗

ct+(x|x)dx. (Gudd)

The indicator I(ŵ, r) is defined as in the (UID) case for r ∈ [0, 1], and plays the same

role of allocating the probability gap according to priority and the (ESEA) principle.

In the (UDD) case, the gaming ability thresholds are defined as

γ0udd =

∫ s∗(0)

s∗(0)

ct+(x|x)dx,

which depends on ŵ, and γ̄udd =
∫ s

s
ct+(x|x)dx for the case ŵ = w̄. As in the (UID)

case, the probability constraint binds if and only if γ ≤ γ0udd.

Theorem 2 (Solution of baseline problem under (UDD)). If the cost function satisfies

(UDD), then α∗
udd(s, ŵ, r) is an optimal allocation rule for (P̃). Furthermore, it is the

unique optimal allocation rule, and it is independent of r under non-neutral priority

(ŵ 6= w̄), or if gaming ability is sufficiently low, γ ≤ γ̄udd. Otherwise, the set of

optimal allocation rules is
{
α∗
udd(s, w̄, r)

}

r∈[0,1]
.

Note that the optimal allocation rule α∗
udd is flat if ct+(x|x) = 0 for almost every

x, that is if a marginal falsification is uniformly costless. Then the optimal rule is

14Multiplicity for the Lagrange multiplier cannot be excluded if ct+(x|x) = 0 on a set of positive
measure, but even in this case the optimal allocation rule is unique.
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to allocate to all scores under high priority, and to never allocate under low priority.

This is, for example, the case with the quadratic cost function c(t|s) = (t− s)2.

4 Solution of the designer’s problem

To solve the designer’s problem (DP) we decompose it into the within problem of

optimally allocating a fixed mass of objects within each group, and the across problem

of optimally choosing the masses of objects accruing to each group while satisfying

the allocative constraints.

Within problem. Let ρi be the mass of objects allocated to group i. Then the

corresponding within problem is

Wi(ρi) = max
αi

∫

Si

αi(s)wi(s)dFi(s) (P)

s.t. (FPC), (PC)

µi

∫

Si

αi(s)dFi(s) = ρi, (RC)

where the within resource constraint (RC) must hold with equality. The within prob-

lem is feasible only if ρi ≤ µi, hence its value function is equal to −∞ otherwise.

Across problem. A group allocation profile ρ satisfies the allocative constraints

if it belongs to the feasible set R = {ρ :
∑

i ρi ≤ ρ̄, ρi ≥ φiρ̄ (∀i)}. The designer’s

problem is then summarized by the across problem

W (F ,γ) = max
ρ∈R

∑

i

µiWi(ρi). (P)

4.1 Optimal within group allocation

In this section, we derive the optimal within group allocation. To simplify notation,

we drop the index i in what follows. Letting ŵ/µ be the Lagrange multiplier on the

resource constraint, the Lagrangian for (P) is
∫

S
α(s){w(s)− ŵ}dF (s)+ ŵρ/µ. Maxi-

mizing the Lagrangian of the within-group problem for a fixed value of the multiplier

on the resource constraint is equivalent to solving the baseline problem. To obtain

the overall solution of the within group problem, we need to identify the correct value

of the Lagrange multiplier that ensures the binding resource constraint.

26



We start by studying how the solutions of the baseline problem (P̃) vary with ŵ

and r, and use these properties to provide a unique solution for the within problem.

We denote the solution of (P̃) by α∗(s, ŵ, r), without precision on the assumption on

upward differences of the cost function unless necessary. Intuitively, a higher value

of the outside option leads to a lower ex ante probability of allocating objects in

the baseline problem. In fact a stronger result holds: the optimal allocation rule is

decreasing in ŵ for every score s.

Proposition 1 (Effect of outside option). The solution to the baseline problem,

α∗(s, ŵ, r), is decreasing in ŵ. It is continuous in ŵ and independent of r for

ŵ 6= w̄. If γ ≤ γ̄, it is also continuous and independent of r at ŵ = w̄. If in-

stead γ > γ̄, α∗(s, w̄, r) is strictly decreasing and continuous in r. Furthermore, it

satisfies limŵ→w̄− α∗(s, ŵ, r) = α∗(s, w̄, 1) and limŵ→w̄+ α∗(s, ŵ, r) = α∗(s, w̄, 0).

Let A∗(ŵ, r) =
∫

S
α∗(s, ŵ, r)dF (s) denote the ex ante probability of allocation

under the optimal allocation rule α∗(s, ŵ, r). The next result is a corollary of Propo-

sition 1.

Corollary 1. The ex ante allocation probability A∗(ŵ, r) is strictly decreasing in ŵ.

It is continuous in ŵ and independent of r for ŵ 6= w̄. If γ ≤ γ̄, it is also continuous

and independent of r at ŵ = w̄. If instead γ > γ̄, A∗(w̄, r) is strictly decreasing and

continuous in r, and satisfies limŵ→w̄− A∗(ŵ, r) = A∗(w̄, 1) and limŵ→w̄+ A∗(ŵ, r) =

A∗(w̄, 0).

Returning to the within problem, the outside option ŵ there is equal to the La-

grange multiplier (scaled by µ) on the resource constraint, and can be interpreted as

the shadow price of marginally tightening the constraint.

Lemma 3 (Endogenizing the outside option). The following statements are equiva-

lent:

(i) α solves (P).

(ii) There exists an outside option ŵ(ρ) such that α solves the baseline problem (P̃)

and ρ = µ
∫

S
α(s)dF (s).

(iii) There exists ŵ such that (α, ŵ) is a saddle-point for the Lagrangian of the within-

group problem
∫

S
α(s){w(s)− ŵ}dF (s) + ŵρ/µ.

Furthermore, the value function of the within problem is concave in ρ, and its deriva-

tive W ′(ρ) exists almost everywhere, and is then equal to ŵ(ρ)/µ.
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All points are classical results in optimization theory (see, for example, Luenberger,

1969, chapter 8). Necessity of (i) holds because the initial program is linear in α.

By assumption, w(s) is bounded. It is easy to see that, for any ŵ below the

lower bound on w(s), the unique optimal allocation rule is to allocate an object with

certainty regardless of scores, while for any ŵ above the upper bound on w(s), the

optimal allocation rule is to never allocate an object with positive probability. Hence,

by varying ŵ between these bounds, we can find an outside option ŵ(ρ) such that the

optimal allocation rule satisfies the resource constraint, and therefore solves (P). If

ŵ(ρ) = w̄ and γ > γ̄, we also need to adjust r to a unique value r(ρ) so as to allocate

exactly ρ objects. The allocation rule α∗(s, ŵ(ρ), r(ρ)) is then the unique solution to

the within problem which we proceed to characterize in the following theorem:

Theorem 3 (Optimal within group allocation). For any 0 ≤ ρ ≤ µ, there exists a

unique outside option value ŵ(ρ) and, if ŵ(ρ) = w̄ and γ > γ̄, a unique value r(ρ),

such that µA∗
(
ŵ(ρ), r(ρ)

)
= ρ. Furthermore, ŵ(ρ) is continuous, decreasing in ρ if

ŵ(ρ) 6= w̄ or γ ≤ γ̄, and constant at w̄ otherwise. The function r(ρ) is continuous and

strictly decreasing. The allocation rule α∗(s, ŵ(ρ), r(ρ)) is then the unique solution to

the within problem (P). The value function of (P), W (ρ) is strictly concave at ρ if

ŵ(ρ) 6= w̄ or γ ≤ γ̄.

4.2 Optimal across group allocation

We first characterize the solutions to the across problem, and provide an algorithm

to obtain the optimal allocation profile ρ = (ρi)i∈I . We then analyze the effect of

changes in the characteristics of the groups on the designer’s payoff interpreted as

social welfare. Finally, we study the effects of changes in the characteristics of the

groups on the optimal allocation profile and on agents’ payoffs.

Recall the across problem is

W (F ,γ) = max
ρ∈R

∑

i

µiWi(ρi), (P)

where ρi is the mass of objects allocated to group i, ρ = (ρi)i∈I is the allocation

profile which must belong to the feasible set R = {ρ :
∑

i ρi ≤ ρ̄, ρi ≥ φiρ̄ (∀i)}, and

Wi(ρi) is the value function of the within problem.

Theorem 4 (Optimal across group allocation). The across problem (P) admits a

solution ρ. Furthermore, ρ solves the across problem if and only if a scalar λR ≥ 0
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and, for each i, a scalar λi ≥ 0, an outside option value ŵi(ρi), and a gap share ri(ρi)

exist such that:

(i) λi(φiρ̄− ρi) = 0 for all i,

(ii) λR(
∑

i ρi − ρ̄) = 0,

(iii) ŵi(ρi) = λR − λi,

(iv) µiA
∗
i

(
ŵi(ρi), ri(ρi)

)
= ρi.

The solution ρ is unique if, for each i, ŵi(ρi) 6= w̄i or γi ≤ γ̄i.

This characterization suggests the following algorithm to find a solution of the

across problem. First, we start by computing the solutions to each within problem

when setting all outside options to 0. For these solutions, we check which constraints

are binding or violated. Next, we adjust outside options to satisfy all the previously

violated constraints with equality when recomputing the corresponding solution. That

may lead to hitting additional constraints. Indeed, increasing allocation to one group

so as to satisfy its quota may violate a previously slack resource constraint, or violate

another group’s quota constraint if the resource constraint was already binding. If

so, we adjust outside options to satisfy with equality all constraints either binding or

violated at any previous step. Because the set of constraints that require adjustment

at some step is bounded and grows at every additional step, the process must end,

and the allocation profile at which it ends is a solution to the across problem.

Algorithm 1 provides a formal version of this algorithm in the simple case where,

for every group i, γi ≤ γ̄i. In this case, we can control allocated mass solely through

the outside options ŵ, and do not need to use r. To understand the algorithm, we

first introduce some preliminary definitions. For any allocation profile ρ ∈ [0, 1]|I|,

Q(ρ) = {i ∈ I : ρi ≤ φiρ̄} is the set of groups whose quota constraint is binding or

violated, and R(ρ) = 1

∑
i ρi≥ρ̄

indicates whether the resource constraint is binding or

violated. Finally, define ŵφi to be the unique value of ŵ such that µiA
∗
i (ŵ, r) = φiρ̄.

In Appendix C, we provide the algorithm for the general case and show it finds a

solution of the across problem.

Welfare. Next, we show social welfare is decreasing in gaming ability, and increasing

with first-order stochastic dominance shifts of the score distribution.

Proposition 2 (Properties of the designer’s value function). The value function of

the across problem W (F ,γ) is nonincreasing in γi, and nondecreasing in Fi with

respect to the first-order stochastic dominance ordering.
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Algorithm 1: Simplified algorithm to solve the across problem

For each group i, set ρ0i to be its optimally allocated mass of objects under the
initial outside option ŵi = 0, that is ρ0i ← µiA

∗
i (0, 1);

Let R0 ← R(ρ0) indicate whether the resource constraint is then violated or
binding, and Q0 ← Q(ρ0) indicate the set of groups whose quota constraint is
violated or binding;
Initiate counter: k ← 0;
repeat

Iterate counter: k ← k + 1;
For groups with violated or binding quota constraints ℓ ∈ Qk−1, set
ŵkℓ ← ŵφℓ so they get exactly their quota φℓ;
if the resource constraint was not binding (Rk−1 = 0) then

For groups with a slack quota constraints, ℓ /∈ Qk−1, keep the outside
option at 0: ŵkℓ ← 0;

else

For groups with a slack quota constraint, ℓ /∈ Qk−1, set ŵkℓ ← ŵ where
ŵ is the unique solution of

∑

ℓ∈Qk−1 φℓρ̄+
∑

ℓ/∈Qk−1 µℓA
∗
ℓ(ŵ, 1) = ρ̄ ;

For all groups compute the corresponding mass of optimally allocated
objects ρki ← µiA

∗
i (ŵ

k
i , 1), and let Rk ←R(ρk) and Qk ← Q(ρk) be the

corresponding constraint indicators;

until constraint indicators are stable: Qk = Qk−1 and Rk = Rk−1;

The effect of gaming ability is simple to analyze as increasing it for any group

tightens the (FPC) constraints, and thus reduces welfare. The effect of score distri-

butions is more difficult to analyze as a first-order stochastic dominance shift in the

score distribution of one group may have complicated effects on the optimal allocation

rule for that group, as well as cross-group effects on allocation rules. However, an en-

velope theorem argument implies we can bypass the analysis of the effects of the shift

on the allocation rule, and instead focus on the effect on welfare holding the optimal

allocation rule fixed. Even then, the effect remains complicated to analyze because

the surplus function wi(s)− ŵi takes positive and negative values on Si. However, an

argument based on the analysis of cumulative surplus functions and the differential

form of the objective function shows improving the score distribution in the first-order

stochastic dominance order always increases welfare under a fixed allocation rule.
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5 Comparative statics

In this section, we provide comparative statics for the solution to the designer’s prob-

lem. We start with the baseline problem (in which the outside options are fixed) and

study how changes in the gaming ability or the score distribution of one group affects

the optimal allocation probabilities for agents within the group itself (direct effects).

We, then, proceed to investigate the resulting within and across group-feedback effects

(indirect effects) when outside options adjust to satisfy the resource and quota con-

straints. As we have anticipated earlier, these indirect effects are driven from changes

in the multipliers on the resource and quota constraints.

5.1 Baseline comparative statics: direct effects

Gaming ability. We show higher gaming ability favors low-score agents, and hurts

high-score agents, if gaming ability is initially low. When initial gaming ability is

sufficiently high, increasing it further affects all scores in the same way, favoring them

if the group has high priority, and hurting them under low priority.

These comparative statics can also be interpreted in terms of externalities: be-

cause they pin down the falsification-proofness constraint, and therefore the optimal

allocation rule, agents with the least falsification costs exert an externality on other

agents. We can think of decreasing gaming ability as removing these agents from the

pool of agents, and interpret the effect it has on other agents as a measure of the

negative externality of these least cost agents. For example, when gaming ability is

initially low, our result says agents with the highest gaming ability have a positive

externality on low score agents, but a negative externality on high score agents.

Proposition 3 (Effect of gaming ability). Consider increasing gaming ability from γ

to γ′ > γ. Then:

(i) Low gaming abilities: If γ < γ′ ≤ γ0, there exists a threshold s̃ such that

α∗(s, ŵ, r|γ′) ≥ α∗(s, ŵ, r|γ) for s ≤ s̃, and α∗(s, ŵ, r|γ′) ≤ α∗(s, ŵ, r|γ) for

s ≥ s̃.

(ii) High gaming abilities, low priority: If γ′ > γ ≥ γ0, and the group has low

priority, then α∗(s, ŵ, r|γ′)− α∗(s, ŵ, r|γ) ≤ 0 is decreasing in s and equal to 0

at s∗(0).

(iii) High gaming abilities, high priority: If γ′ > γ ≥ γ0, and the group has

high priority, then α∗(s, ŵ, r|γ′)− α∗(s, ŵ, r|γ) ≥ 0 is decreasing in s and equal

to 0 at s∗(0).
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Returns to scale in fraud. In this section, we investigate how the shape of the

falsification cost function affects optimal allocations. In particular we focus on the

class E of Euclidean cost functions c(t|s) = C
(
|t− s|

)
such that C is either concave or

convex and study the effect of increasing the convexity of the cost function. Intuitively,

more convexity captures higher economies of scale in the size of falsification.

We first characterize the shape of optimal allocation rules under Euclidean costs

in E and proceed with comparative statics in what follows.

Proposition 4 (Optimal allocation rules under Euclidean cost). If C is convex, then

the cost function satisfies (UDD) and the optimal allocation rule is linear in s on

[s∗, s
∗], taking value α∗(s) = C′(0)

(
s − s∗

)
. If C is concave, then the cost function

satisfies (UID) and the optimal allocation rule is convex in s on [s∗, ŝ], and concave

in s on [ŝ, s∗].

Next we seek to compare Euclidean cost functions, while fixing gaming ability to

γ. To compare Euclidean cost functions, we need some normalization. We normalize

the cost functions so that the maximum amount of falsification an agent is willing to

undertake to get the good is identical for all cost functions and less than s∗(0)−s∗(0).

That is, we consider two cost functions C, Ĉ such that L ≡ C−1(γ) = Ĉ−1(γ) <

s∗(0) − s∗(0). We say Ĉ is more convex than C, and denote Ĉ �vex C if either Ĉ is

convex and C is concave, or both are concave and C is more concave than Ĉ in the

usual sense, or both are convex and Ĉ is more convex than C in the usual sense.15 We

denote the corresponding optimal allocation rules by α∗, α̂∗, and the growth intervals

of these allocation rules by I∗, Î∗.

Proposition 5 (Effect of lowering economies of scale). If Ĉ is more convex than C,

then:

(i) I∗ ⊆ Î∗ ⊆ [s∗(0), s
∗(0)]. Furthermore, I∗ = Î∗ ⊂ [s∗(0), s

∗(0)] if both functions

are concave.

(ii) If I∗ ⊂ [s∗(0), s
∗(0)], there exists a threshold s̃ ∈ I∗ such that α̂∗(s) ≤ α∗(s) for

s > s̃, and α̂∗(s) ≥ α∗(s) for s < s̃.

(iii) If I∗ = Î∗ = [s∗(0), s
∗(0)], then both functions are convex and α̂∗(s) ≤ α∗(s) for

all s if the group has low priority, but α̂∗(s) ≥ α∗(s) for all s if the group has

high priority.

15 That is, there exists an increasing and concave function g : [0, 1] → [0, 1] such that C = g ◦ Ĉ
when both are concave, or an increasing and convex function h : [0, 1]→ [0, 1] such that Ĉ = h ◦ C if
both are convex.
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In words, lower economies of scale, like higher gaming ability, favor agents with

lower scores and hurt agents with higher scores. If diseconomies of scale are too

strong, as in (iii), then the effect is the same for all scores, similarly to the case of

high gaming abilities in Proposition 3

Score distribution. Next, we study changes in the score distribution that lead to

uniformly increasing the optimal allocation probability. For this purpose, we redefine

score so that s = w(s)−ŵ, which amounts to a transformation of the score distribution

F . Hence the eligibility threshold is fixed to 0. We consider two atomless score

distributions F̂ and F̃ whose common support [s, s] contains a neighborhood of 0.

We let the function ∆(s) = F̃ (s)− F̂ (s) denote the change in the score distribution.

All distributional effects on the allocation rule are transmitted through the match-

ing functions m̂(s) and m̃(s), so we start by showing that the allocation rules satisfies

α̃(s) ≥ α̂(s) for every s, and every cost function that satisfies (UID) or (UDD) if and

only if m̃(s) ≤ m̂(s) for every s ≤ 0. Then we provide a necessary and sufficient

condition on the distributions for the matching function to decrease.

Note that the matching function is normally defined on [s∗(0), 0], but the lower end

s∗(0) may now depend on which score distribution is used. To ease the exposition, we

extend each matching function m̂(s) and m̃(s) to the left by letting m̂(s) = m̂
(
ŝ∗(0)

)

for s ≤ ŝ∗(0), and m̃(s) = m̃
(
s̃∗(0)

)
for s ≤ s̃∗(0).

Proposition 6 (Effect of score distribution). The following statements are equivalent:

(a) The allocation rules satisfy α̃(s) ≥ α̂(s) for every s, and every cost function that

satisfies (UID) or (UDD).

(b) The matching functions satisfy m̃(s) ≤ m̂(s) for every s ≤ 0.

(c) For every 0 > s ≥ max{ŝ∗(0), s̃∗(0)},

∫ m̃(s)

s

xdF̃ (x) ≥

∫ m̃(s)

s

xdF̂ (x).

(d) For every 0 > s ≥ max{ŝ∗(0), s̃∗(0)},

∫ 0

s

{
∆(s)−∆(x)

}
dx+

∫ m̃(s)

0

{
∆
(
m̃(s)

)
−∆(x)

}
dx ≥ 0.

It is important to note that a simple first-order stochastic dominance shift does

not suffice to increase the allocation probability of all scores. Because it is difficult
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to relate conditions (c) and (d), we provide a sufficient condition on ∆ that is more

easily interpretable. We say ∆ divests an interval I ⊆ S if every score in I (formally,

every measurable subset of I) is less likely under F̃ than under F̂ . That is if, for

every, [s, s′] ⊆ I,

∆(s′)−∆(s) =
{
F̃ (s′)− F̃ (s)

}
−
{
F̂ (s′)− F̂ (s)

}
≤ 0,

or, equivalently, if ∆ is nonincreasing on I. If instead ∆ is nondecreasing on I, we

say it invests I.

Proposition 7. Suppose there exists a ∈ [s, 0) and b ∈ (0, s] such that

1. ∆(a) = ∆(b) = 0, ∆(s) ≥ 0 for all s ≤ a, and all s ≥ b;

2. ∆ divests [a, 0] and invests [0, b];

3.
∫ 0

s
∆(x)dx ≤ 0 and

∫ s

0
∆(x)dx ≤ 0.

Then the allocation rules satisfy α̃(s) ≥ α̂(s) for every s.

In particular, a change of distribution that replaces scores below the eligibility

threshold by scores above the eligibility threshold satisfies the conditions of Proposi-

tion 7 and therefore uniformly increases the allocation probability.

5.2 Comparative statics: indirect effects

Changes in the characteristics of one group can generate both cross-group feedback

effects. Suppose for example that the resource constraint is binding, and the char-

acteristics of group i change with the direct effect of increasing the mass of objects

A∗
i (ŵi, ri) allocated to group i under a constant outside option ŵi 6= w̄i (recall ri plays

no role in this case), corresponding to the value of the solution of the across problem

before the change. This could, for example, be the result of increasing gaming ability

γi, if it is already above γ̄i and ŵi < w̄i (see Proposition 3). The direct effect of

the change of characteristics of group i then leads to a violation of the resource con-

straint. In order to compensate for this direct effect, the endogenous outside option of

all groups including i adjusts upward, leading the mass allocated to all groups but i to

decrease (the cross-group effect), and the mass allocated to group i to be readjusted

downward (the within group feedback effect). Overall, while the mass allocated to

all other groups decreases due to the feedback effect, the mass allocated to group i

increases when combining the direct and feedback effects. Indeed, the feedback effect
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is only necessary to keep the resource constraint satisfied. Since the feedback effect

lowers the mass allocated to all other groups with an initially slack quota constraint,

this frees some resources for group i, so there is no need for the feedback effect to

overcompensate the direct effect.

6 Economic implications, extensions and lessons

To conclude this study, we discuss some economic implications and extensions of our

framework, as well as some theoretical connections.

Discriminating on observables. Our findings offer support for affirmative-action

type of policies in settings in which score or priority manipulations are a concern.

Consider two groups i = 1, 2, that differ only in their gaming ability γ1 > γ2, and

assume there are no allocative constraints, or they do not bind in any of the considered

situations. The in-group (group 1) has higher gaming ability than the out-group

(group 2). Under the naive selection rule which allocates the object to agents with

w1(s) = w2(s) ≥ ŵ, agents from the in-group are unfairly advantaged as they can more

easily falsify to the threshold. In fact, under any allocation rule that induces some

falsification but cannot discriminate across groups, the in-group must be doing better

than the out-group. Under our optimal falsification-proof rule without discrimination,

the outcome is fair in the sense that agents with equal scores are treated identically.

However, agents from the in-group exert an externality on agents from the out-group.

Assuming gaming abilities are sufficiently low (γ1 ≤ γ0), we can use Proposition 3 to

describe how discriminating across groups would change the outcome. Discrimination

yields the same optimal falsification-proof allocation rule for the in-group, whereas the

out-group would face a different and steeper allocation rule, favoring high scores but

harming low-scores from the out-group. Whether the out-group benefits on average

depends on the score distribution. However, if we consider worthiness w to be the

right standard of social value from allocations, the new allocation rule faced by the

out-group is then closer to the first best allocation from a social perspective. In that

sense, adding observables that allow to discriminate across different levels of gaming

ability is socially valuable both for fairness and allocative efficiency reasons.

Designer as a certification intermediary. In our model, we assume the designer

can commit to an allocation mechanism conditioning on score and group. We show

next she can attain the same outcome with less commitment power. We assume the
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allocation decision is delegated to a decision maker whose preferences may be slightly

misaligned with the designer’s objective. Specifically, for the decision maker, expected

worthiness is given by the increasing function w̃i(s) instead of wi(s). Without loss of

generality, we normalize her outside option to 0. We also assume she faces the same

allocative constraints as the designer in our initial model. She can observe the group

label, but has no access to the score. Instead, she relies on the designer who can

commit to selectively communicate information about scores as she wishes. In this

version of the model, the designer is a certification intermediary who can design an

information structure but has no control of allocation decisions.

With less commitment power, the designer can only be worse off. However, she

can try to emulate her full commitment payoff by using a binary-signal information

structure that recommends to allocate with probability α∗
i (s), and to reject with

probability 1−α∗
i (s). For this to be effective, the decision maker must find it optimal

to obey the recommendation. Then we say that α∗ is obedient. We show this is

the case whenever the designer and decision maker preferences are sufficiently well

aligned.

Proposition 8. There exists ε > 0 such that α∗ is obedient whenever ||wi− w̃i||∞ < ε

for every i ∈ I.

Therefore, our optimal allocation rule also solves the information design problem

of the designer as a certification intermediary.

Open problems. Perez-Richet and Skreta (2022) derive optimal mechanisms when

agents’ gaming ability and valuation is known. In this paper, gaming abilities and

valuations are privately-known. From Perez-Richet and Skreta (2023) we know that

mechanisms that rely on deterministic score submission (such as FP mechanisms)

cannot depend of such soft dimensions of type. It remains an open question what are

the optimal mechanisms without the falsification-proofness desideratum when gaming

abilities and valuations are privately-known. It is possible that optimal mechanisms

rely on random score submissions and to derive the optimum one must then solve

for a problem with multidimensional private information. Beyond this challenging

problem, one can leverage our techniques to consider alternative mechanism-design

problems or objectives for the designer.
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déclarent-elles leur effectif à 49 employés pour contourner la loi?” Note IPP 82, Institut
des Politiques Publiques.

Augias, V. and E. Perez-Richet (2023): “Non-Market Mechanisms: Optimal Design
and Investment Incentives,” Working paper.

Ball, I. (2022): “Scoring Strategic Agents,” Working Paper.

Ben-Porath, E., E. Dekel, and B. L. Lipman (2014): “Optimal allocation with costly
verification,” American Economic Review, 104, 3779–3813.

——— (2019): “Mechanisms with Evidence: Commitment and Robustness,” Econometrica,
87, 529–566.

Bjerre-Nielsen, A., L. S. Christensen, M. H. Gandil, and H. H. Sievertsen

(2023): “Playing the system: address manipulation and access to schools,” .

Boerma, J., A. Tsyvinski, and A. P. Zimin (2021): “Sorting with team formation,”
Tech. rep., National Bureau of Economic Research.

Bolton, L. (2018): “Manipulation of the Waitlist Priority of the Organ Allocation System
through the Escalation of Medical Therapies,” OPTN/UNOS EthicsCommittee.

Border, K. C. (1991): “Implementation of reduced form auctions: A geometric approach,”
Econometrica: Journal of the Econometric Society, 1175–1187.

Carlier, G. (2012): “Optimal transportation and economic applications,” Lecture Notes,
18.

37
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A Proofs

Lemma A.4 (Smoothness and monotonicity). If an allocation rule satisfies (FPC), it is
Lipschitz continuous. Furthermore, if α is feasible for (P̃) but not monotonic, then there
exists a nondecreasing allocation rule α̃ that is feasible and strictly better for (P̃).

Proof. If α satisfies (FPC), the regularity assumption of Definition 1 directly implies it is
Lipschitz continuous. Next, define

α̃(s) = α−(s)1s≤ŝ+α+(s)1s≥ŝ,

where α− : [s, ŝ] → [0, 1] is the largest nondecreasing function that is everywhere below α
on [s, ŝ], and α+ : [ŝ, s]→ [0, 1] is the lowest nondecreasing function everywhere above α on
[ŝ, s]. So α̃ is nondecreasing.

First, we show α̃ remains feasible. It obviously satisfies (PC). Since α̃ is nondecreasing,
we only need to check (FPC) for upward falsification, so let s < t, and let s′ = max

{
x ≥

s : α̃(x) = α̃(s)
}
, and t′ = min

{
x ≤ t : α̃(x) = α̃(t)

}
. We can assume s ≤ s′ < t′ ≤ t, for

otherwise α̃(t) = α̃(s) and the proof is done. Then, we have

α̃(t)− α̃(s) = α̃(t′)− α̃(s′) = α(t′)− α(s′) ≤
1

γ
c(t′|s′) ≤

1

γ
c(t|s),

where the first equality is by definition of s′, t′; the second equality is because α̃must coincide
with α wherever it is not flat, and therefore also at the end of every flat interval. The first
inequality is due to falsification-proofness of α, and the last inequality to cost monotonicity.

Scores above (below) ŝ are more (less) likely to get an object under α̃ than under α.
Hence, α̃ is better than α for (P̃). Furthermore, if α is not monotonic, there must exist an
interval of scores for which α and α̃ do not coincide. Since F has full support, α̃ is therefore
strictly better than α.

Proof of Lemma 1. By strict monotonicity of w, w(s) − ŵ and s − ŝ have the same sign
implying both W+ and W− are increasing on [s, ŝ] and decreasing on [ŝ, s], and therefore
single-peaked at ŝ. The existence of s∗(ν) and s∗(ν) is then ensured by continuity of bothW+

and W−, and the fact that both functions take weakly negative values at both ends of the
score interval. Then (i) and (ii) are direct consequence of single-peakedness and continuity.
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For (iii), note that in the low priority case we have W(s, ŵ) = W+(s, ŵ) = 0, while in the
high priority case W(s, ŵ) = W−(s, ŵ) = 0. Finally, for (iv), W(s∗(ν), ŵ) = W(s∗(ν), ŵ)
implies:

E

(
w|s∗(ν) ≤ s ≤ s∗(ν)

)
=
W(s∗(ν), ŵ)−W(s∗(ν), ŵ)

F (s∗(ν))− F (s∗(ν))
+ ŵ = ŵ.

Proof of Lemma 2. The objective functions (DOF) and (DOF) are obtained by integration
by parts after using (ID) and (ID). To complete the argument, we also rewrite the con-
straints in the same way. The differential version of the falsification-proofness constraint
(DFPIC) is immediate. We can add the monotonicity differential constraint (DMC) to the
program without loss of generality by Lemma A.4. Given (DMC) the probability constraint
can be written in the two following equivalent manners:

0 ≤ α, and α+

∫ s

s
α′(x)dx ≤ 1,

or

α ≤ 1, and α−

∫ s

s
α′(x)dx ≥ 0.

Considering the program written as an optimization program on (α,α′), it appears setting
α = 0 in the low priority case maximizes the objective function (DOF), and relaxes the
probability constraint on α′. It is therefore optimal. Similarly, considering the program
as an optimization program on (α,α′), setting α = 1 both maximizes (DOF) and relaxes
the probability constraint on α′. Having simplified the program in this way results in the
differential program of the lemma in each cases.

Lemma A.5. A (nondecreasing and Lipschitz) allocation rule α̂ solves (P̃) if and only if
there exists a Lagrange multiplier ν ≥ 0 such that:

(i) α̂(s) = α̂
(
s∗(ν)

)
for every s ≤ s∗(ν), and α̂(s) = α̂

(
s∗(ν)

)
for every s ≥ s∗(ν),

(ii) α̂(t)− α̂(s) ≤ 1
γ c(t|s) for every s∗(ν) ≤ s < t ≤ s∗(ν),

(iii) If w̄ ≤ ŵ, α̂
(
s∗(ν)

)
= 0 and ν

(
1− α̂

(
s∗(ν)

))
= 0,

(iv) If w̄ ≥ ŵ, α̂
(
s∗(ν)

)
= 1 and να̂

(
s∗(ν)

)
= 0,

(v) For every nondecreasing Lipschitz allocation rule α that satisfies (i) and (ii),

∫ s∗(ν)

s∗(ν)

{
w(s)− ŵ

}
α̂(s)dF (s) ≥

∫ s∗(ν)

s∗(ν)

{
w(s)− ŵ

}
α(s)dF (s).

Proof. We proceed in two steps. The first step is a standard Lagrangian necessity and
sufficiency theorem. The second step ensures the conditions of the lemma are equivalent
to the Lagrangian conditions. In this proof, we say an allocation rule α is feasible if it is
(Λ/γ)-Lipschitz and nondecreasing, satisfies (FPC) and α = 0 under low priority, and α = 1
under high priority. It is immediate to verify that the set of such feasible allocation rules,
which we denote by A, is convex.
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Step 1: A feasible allocation rule α̂ solves the within problem if and only if there exists
ν ≥ 0 such that (a) ν = 0 or α̂ − α̂ = 1, and (b) L(α̂, ν) ≥ L(α, ν) for every feasible
allocation rule α.

⇐ If ν = 0, the conclusion is immediate. Suppose instead ν > 0. Then (a) implies
∫

S α̂
′(z)dz = 1. Hence, for any feasible α that satisfies (DPC),

∫

S
α̂′(z)W(z, ŵ)dz = L(α̂, ν) ≥ L(α, ν) ≥

∫

S
α′(z)W(z, ŵ)dz,

where the last inequality is implied by ν > 0 and
∫

S α
′(z)dz ≤ 1.

⇒ For every b ≥ 0, consider the program where we replace the probability constraint
(DPC) by the constraint g(α) ≤ b where g(α) =

∫

S α
′(z)dz. Let its value be

h(b) = max
α∈A

Ω(α) s.t.

∫

S
α′(z)dz ≤ b,

where Ω(α) =
∫

S α
′(z)W(z, ŵ)dz. Since the objective Ω(·) and the constraint g(·) are both

linear in α′, and A is convex, h(b) is a concave function. It is also obviously nondecreasing.
Let ν ≥ 0 be the left-derivative of h at b = 1, which exists by concavity and is nonnegative
by monotonicity.

By assumption, we have h(1) = Ω(α̂). If g(α̂) = 1, then we also have Ω(α̂) = L(α̂, ν).
Otherwise, we must have g(α̂) < 1. But then α̂ must also solve the program for any
b ∈ [g(α̂), 1], implying h is constant on this interval, and ν = 0. Then again, Ω(α̂) = L(α̂, ν).
For all α ∈ A, we have Ω(α) ≤ h

(
g(α)

)
by definition of h, and h

(
g(α)

)
≤ h(1)+ν

(
g(α)−1

)
.

Hence, L(α, ν) = Ω(α)− ν
(
g(α) − 1

)
≤ h(1) = Ω(α̂) = L(α̂, ν).

Step 2: A nondecreasing and Lipschitz allocation rule α satisfies (i)-(v) for some ν ≥ 0 if
and only if it is feasible and satisfies (a) and (b).

⇒ It is easy to see (i), (iii) and (iv) imply (a), and α̂ = 0 under low priority and α̂ = 1
under high priority. Next, we show that (i) and (ii) imply α̂ satisfies (FPC). Let s < t, and
define s′ = max{s∗(ν), s} and t′ = min{s∗(ν), t}. Then

α̂(t)− α̂(s) = α̂(t′)− α̂(s′) ≤
1

γ
c(t′|s′) ≤

1

γ
c(t|s),

where the first equality is from (i), the first inequality from (ii), and the last inequality by
cost monotonicity. Hence α̂ is feasible and satisfies (a).

Suppose α is feasible. Then, let α̃(s) =
[
α(s) + a

]1

0
, where a = −α

(
s∗(ν)

)
1w̄<ŵ +

(
1 −

α
(
s∗(ν)

))
1w̄≥ŵ, and [z]10 = z 10≤z≤1+1z>1. Then α̃ satisfies (i) and (ii), and (b) follows

42



from:

L(α̂, ν) =

∫

S
α̂′(z)W(z, ŵ)dz (by (i), and (a))

= ν
(
α̂− α̂

)
+

∫ s∗(ν)

s∗(ν)
{w(s) − ŵ}α̂(s)dF (s)

(by integration by parts and Lemma 1)

= ν +

∫ s∗(ν)

s∗(ν)
{w(s)− ŵ}α̂(s)dF (s) (by (a))

≥ ν +

∫ s∗(ν)

s∗(ν)
{w(s)− ŵ}α̃(s)dF (s) (by (v))

= ν +

∫ s∗(ν)

s∗(ν)
{w(s)− ŵ}α(s)dF (s) + a

∫ s∗(ν)

s∗(ν)
{w(s)− ŵ}dF (s)

︸ ︷︷ ︸

=0

(by Lemma 1)

= ν +

∫ s∗(ν)

s∗(ν)
α′(z)W(z, ŵ)dz − ν

{
α
(
s∗(ν)

)
− α

(
s∗(ν)

)}
(by integration by parts)

= ν +

∫ s∗(ν)

s∗(ν)
α′(z)

[
W(z, ŵ)− ν

]
dz

≥ ν +

∫

S
α′(z)

[
W(z, ŵ)− ν

]
dz = L(α, ν), (as W(z, ŵ) < ν for z /∈ [s∗(ν), s

∗(ν)])

where we use the relation W
(
s∗(ν), ŵ

)
=W

(
s∗(ν), ŵ

)
= ν from Lemma 1.

⇐ Feasibility directly implies (ii) as α̂ must satisfy (FPC). By Lemma 1, maximizing
L(α, ν) implies setting α′(s) to 0 for almost every s outside of [s∗(ν), s

∗(ν)] which implies (i).
Feasibility and (i), then imply the first equality in (iii) and (iv). If ν = 0, the second equality
is automatically satisfied, otherwise, it is satisfied by (a). Consider any nondecreasing and
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Lipschitz allocation rule α that satisfies (i) and (ii). Then it is feasible, and

∫ s∗(ν)

s∗(ν)
α(s){w(s) − ŵ}dF (s) =

∫ s∗(ν)

s∗(ν)
α′(z)W(z, ŵ)dz − ν

{
α
(
s∗(ν)

)
− α

(
s∗(ν)

}

(by integration by parts)

=

∫ s∗(ν)

s∗(ν)
α′(z)

[
W(z, ŵ)− ν

]
dz

=

∫

S
α′(z)

[
W(z, ŵ)− ν

]
dz (by (i))

= L(α, ν) − ν

≤ L(α̂, ν)− ν (by (b))

=

∫

S
α̂′(z)

[
W(z, ŵ)− ν

]
dz

=

∫ s∗(ν)

s∗(ν)
α̂′(z)

[
W(z, ŵ)− ν

]
dz (by (i))

=

∫ s∗(ν)

s∗(ν)

ˆα′(z)W(z, ŵ)dz − ν
{
α̂
(
s∗(ν)

)
− α̂

(
s∗(ν)

}

=

∫ s∗(ν)

s∗(ν)
α(s){w(s) − ŵ}dF (s) (by integration by parts)

Proof of Theorem 1. To keep notations simple, we only indicate the dependence of α∗
uid on

ŵ, r when it is useful for the argument. We check that the conditions of Lemma A.5 are
satisfied. We pick the multiplier ν =W(s∗, ŵ) ≥ 0. Then α∗

uid clearly satisfies (i). To see it
satisfies (iii) and (iv), note that α∗

uid(s
∗)− α∗

uid(s∗) =
1
γ c(s

∗|s∗). Hence, by (Buid), either it
is equal to 1 and the probability constraint is binding, or it is strictly less than 1, and then
ν = 0 and (s∗, s

∗) = (s∗(0), s
∗(0)).

α∗
uid maximizes the relaxed program of Section 3.2. To show it satisfies (v), we need

to show it satisfies the falsification-proofness constraint in (ii) for any pair s, t such that
s, t ∈ [s∗, ŝ] or s, t ∈ [ŝ, s∗]. Take the first case, for example. Then

α∗
uid(t)− α∗

uid(s) = −
1

γ

∫ t

s
cs
(
m(x)|x)dx

≤ −
1

γ

∫ t

s
cs(m(t)|x)dx (by (UID))

=
1

γ

{
c
(
m(t)|s

)
− c
(
m(t)|t

)}

≤
1

γ
c(t|s). (by (UID))

The argument is similar in the second case.
For uniqueness, first note that c(s∗(ν)|s∗(ν)) is increasing in ν so there is a single value of

the Lagrange multiplier that satisfies (Buid), that is a single value of the Lagrange multiplier
such that the necessary and sufficient conditions of Lemma A.5 are satisfied. Then for this
ν and the corresponding bounds (s∗, s

∗), the solution to the optimal transport problem is
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uniquely determined up to a constant. However, this constant is uniquely determined either
by the probability constraint if it binds, that is if c(s∗|s∗) = γ, or by the requirement that
α∗
uid(s∗) = 0 under low priority, and α∗

uid(s
∗) = 1 under high priority. The only case in which

uniqueness fails is if we are in the neutral priority case where w̄ = ŵ, and the probability
constraint is slack. In this case, note that (s∗, s

∗) = (s∗(0), s
∗(0)) = (s, s). Hence, for the

probability constraint not to bind, it must be the case that γ̄ = c(s|s) < γ. The designer is
then indifferent across all allocation rules α∗

uid(s, ŵ, r) for any r ∈ [0, 1]. Indeed, for r′ > r,
we have α∗

uid(s, w̄, r
′)− α∗

uid(s, w̄, r) = (r′ − r)Γuid so the difference in the designer’s payoff
is

(r′ − r)Γuid

∫ s

s
{w(s) − ŵ}dF (s) = (r′ − r)Γuid(w̄ − ŵ) = 0.

Proof of Theorem 2. To keep notations simple, we only indicate the dependence of α∗
udd

on ŵ, r when it is useful for the argument. Again, we only need to check the conditions
of Lemma A.5 are satisfied. Picking ν = W(s∗, ŵ), it is clear that (i) holds. For (ii), let
s∗ ≤ s < t ≤ s∗, then

α∗
udd(t)− α∗

udd(s) =
1

γ

∫ t

s
ct+(x|x)dx

≤
1

γ

∫ t

s
ct(x|s)dx (by (UDD))

=
1

γ
c(t|s).

This also shows that the first-order approach is valid. Furthermore, the differential
program solved by α∗

udd is obtained from the program in (v) by using integration by parts
on the objective function. Therefore (v) holds. (iii) and (iv) are immediate to check.

For uniqueness, note that while there may be several values of the Lagrange multiplier ν
that work if ct+(x|x) is equal to 0 both in the neighborhoods of s∗ and s∗, the corresponding
optimal allocation rules for the program would be identical for all such values, so uniqueness
of the solution to the differential program is granted when γ ≤ γ̄udd or ŵ 6= w̄. In the
remaining neutral priority case, the designer is indifferent across allocation rules α∗

udd(s, ŵ, r)
for any r ∈ [0, 1]. The argument is the same as in the (UID) case.
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B Online appendix I: proofs of comparative statics

Proof of Proposition 3. Recall the matching function m : [s∗(0), ŝ]→ [ŝ, s∗(0)] is decreasing.
This implies the growth interval is increasing in γ for the inclusion order. It increases strictly
for γ < γ0, and is equal to [s∗(0), s

∗(0)] for γ ≥ γ0.
Consider first γ < γ′ < γ0, and the function δ(s) = α∗(s|γ′) − α∗(s|γ). We denote by

s∗[γ] and s∗[γ] the optimal matching pair under γ, where we use brackets to distinguish
them from the functions s∗(ν), s

∗(ν).
δ(s) is equal to 0 for s ≤ s∗[γ

′] and s ≥ s∗[γ′]. It is equal to α∗(s|γ′), and therefore
increasing and positive, on [s∗[γ

′], s∗[γ]], and to α∗(s|γ′) − 1, and therefore increasing and
negative on [s∗[γ], s∗[γ′]].

If the cost function satisfies (UID), the derivative of δ is

δ′(s) =

(
1

γ
−

1

γ′

)

cs
(
m(s)|s

)
< 0

on [s∗[γ], ŝ], and

δ′(s) =

(
1

γ′
−

1

γ

)

ct
(
m(s)|s

)
< 0

on [ŝ, s∗[γ]].
If, instead, the cost function satisfies (UDD), its derivative is

δ′(s) =

(
1

γ′
−

1

γ

)

ct+
(
s|s
)
< 0

on [s∗[γ], s
∗[γ]].

Hence, δ increases from 0, then decreases and becomes negative, and increases back to
0, which proves point (i) of the proposition.

Next, suppose γ′ > γ > γ0. If the priority is low, then the growth interval under both
γ and γ′ is [s∗(0), s]. The computation of δ′ in this interval is the same as above, implying
now δ is decreasing on [s∗(0), s]. Since δ

(
s∗(0)

)
= 0, this proves point (ii).

If the priority is high, then the growth interval under both γ and γ′ is [s, s∗(0)]. The
computation of δ′ in this interval is the same as above, implying now δ is decreasing on
[s, s∗(0)]. Since δ

(
s∗(0)

)
= 0, this proves point (iii).

Proof of Proposition 4. For s < t

ct(t|s) = C
′
(
t− s

)

is increasing in s if C is concave, and decreasing if C is convex. Using the formulas from
Theorem 1 and Theorem 2, we get

α∗(s) =







0 if s < s∗

ΓuddI(ŵ, r) +
1
γ C

′(0)
(
s− s∗

)
if s∗ ≤ s ≤ s∗

1 if s > s∗
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in the (UDD) case, and

α∗(s) =







0 if s < s∗

ΓuidI(ŵ, r) +
1
γ

∫ s
s∗
C′
(
m(x)− x

)
dx if s∗ ≤ s ≤ ŝ

1− ΓuidĪ(ŵ, r)−
1
γ

∫ s∗

s C
′
(
x−m−1(x)

)
dx if ŝ ≤ s ≤ s∗

1 if s > s∗

in the (UID) case. In the latter case, for s ∈ [s∗, ŝ],

α′(s) =
1

γ
C′
(
m(s)− s

)
,

is increasing in s by concavity of C and since m(s) is decreasing in s. If instead s ∈ [ŝ, s∗],
then

α′(s) =
1

γ
C′
(
s−m−1(s)

)

is decreasing in s by concavity of C and since m−1(s) is decreasing in s.

Proof of Proposition 5. When C is concave, the growth interval is determined by the equa-
tion m(s∗) − s∗ = L, and does not vary with the cost function, and it is a subset of
[s∗(0), s

∗(0)] since we assumed L < s∗(0) − s∗(0). For convex cost functions, the growth
interval is given by the equation m(s∗)− s∗ = min{s∗(0)− s∗(0), 1/C

′(0)} by Proposition 4.
Furthermore, if both cost functions are convex, the convex ordering and our normalization
imply Ĉ′(0) ≤ C′(0), hence I∗ ⊆ Î∗.

Next, let δ(s) = α̂∗(s) − α∗(s). Suppose first both cost functions are concave and let
I∗ = [s∗, s

∗] be their common growth interval. In particular δ(s∗) = δ(s∗) = 0. Furthermore,
δ is differentiable and

γδ′(s) =

{{
1− g′ ◦ Ĉ

(
m(s)− s

)}
Ĉ′
(
m(s)− s

)
if s ∈ [s∗, ŝ],

{
1− g′ ◦ Ĉ

(
s−m−1(s)

)}
Ĉ′
(
s−m−1(s)

)
if s ∈ [ŝ, s∗]

,

where g is an increasing and concave bijection of [0, 1] such that C = g ◦ Ĉ. As such
g′(0) ≥ 1 ≥ g′(1), and g′ is a non-increasing function. Since C′ ≥ 0, this implies δ′ is single
crossing from the positives to the negatives on [s∗, ŝ] and from the negatives to the positives
on [ŝ, s∗]. Therefore there exists a single threshold s̃ ∈ [s∗, s

∗] such that δ(s) ≥ 0 for s ≤ s̃
and δ(s) ≤ 0 for s ≥ s̃.

If the two cost functions are convex, then for Ĉ to be more convex than C, it must be
that Ĉ′(0) ≤ C′(0) which implies (ii).

Let C̃ be the unique linear cost function that belongs to our normalized class of functions.
Since C̃ is both concave and convex, point (ii) is satisfied when comparing C̃ to a concave
cost function C, and also when comparing a convex cost function Ĉ to C̃. Since α̂∗ − α∗ =
α̂∗ − α̃∗ + α̃∗ − α∗, it is also satisfied when comparing Ĉ to C.

If I∗ = Î∗ = [s∗(0), s
∗(0)], then both functions must be convex by (i). If the group

has low priority, then α∗
(
s∗(0)

)
= α̂∗

(
s∗(0)

)
= 0, and both allocation rules are linear with

respective slopes C′(0) ≥ Ĉ′(0), implying α̂∗(s) ≤ α∗(s) for all s. If instead the group has
high priority, the slopes compare in the same way, but the allocation rules are tied at s∗(0)
instead of s∗(0), implying α̂∗(s) ≥ α∗(s) for all s.

Proof of Proposition 6.
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• (b)⇒ (a). Suppose (b) holds.
We start by showing (i) s̃∗(0) ≤ ŝ∗(0) and (ii) s̃∗(0) ≤ ŝ∗(0).
First suppose s̃∗(0) = s. Then (ii) must hold, and (i) also because, otherwise, we would

have the following contradiction

s = s̃∗(0) = m̃
(
s̃∗(0)

)
≤ m̂

(
s̃∗(0)

)
< m̂

(
ŝ∗(0)

)
= ŝ∗(0),

where the first inequality is by (b), and the second inequality because m̂ is decreasing on
[ŝ∗(0), 0].

Next, suppose ŝ∗(0) = s. Then (i) must hold, and (ii) also because, otherwise, we would
have the following contradiction

s̃∗(0) = m̃−1
(
s̃∗(0)

)
< m̃−1

(
ŝ∗(0)

)
≤ m̂−1

(
ŝ∗(0)

)
= ŝ∗(0) = s,

where the first inequality is because m̃−1 is decreasing on [0, s̃∗(0)], and the second inequality
is by (b).

If neither of these cases hold, by Lemma 1, (iii), we must have s̃∗(0) = s and ŝ∗(0) = s,
which imply (i) and (ii).

An implication of (i) and (ii) is (iii): if F̂ has high priority, then so does F̃ , and if F̃ has
low priority, then so does F̂ .

Next, consider a cost function that satisfies (UDD).
(b) implies m̃(ŝ∗) ≤ m̂(ŝ∗) = ŝ∗, therefore

∫ m̃(ŝ∗)

ŝ∗

ct+(x|x)dx ≤

∫ ŝ∗

ŝ∗

ct+(x|x)dx = γ.

Then, using (Budd) and point (i) we just proved, we must have s̃∗ ≤ ŝ∗.
Then, for every s ∈ [ŝ∗, s̃

∗],

α̃(s)− α̂(s) = Γ̃udd 1E +

∫ ŝ∗

s̃∗

ct+(x|x)dx ≥ 0,

where E is the event in which only F̃ has high priority (the event in which only F̂ has high
priority is impossible by (iii)). This also implies s̃∗ ≤ ŝ∗, so, for any s ≥ s̃∗, we also have
1 = α̃(s) ≥ α̂(s). Finally, for s ≤ ŝ∗, we have α̃(s) ≥ α̂(s) = 0.

Finally, consider a cost function that satisfies (UID).
(b) implies m̃(ŝ∗) ≤ m̂(ŝ∗) = ŝ∗, therefore

c
(
m̃(ŝ∗)|ŝ∗

)
≤ c
(
ŝ∗|ŝ∗

)
≤ γ.

Then, using (Buid) and point (i) we just proved, we must have s̃∗ ≤ ŝ∗.
(b) also implies m̂−1(s̃∗) ≥ m̃−1(s̃∗) = s̃∗, therefore

c
(
s̃∗|m̂−1(s̃∗)

)
≤ c(s̃∗|s̃∗) ≤ γ.

Then, using (Buid) and point (ii) we just proved, we must have s̃∗ ≤ ŝ∗.
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Then, for every s ∈ [ŝ∗, 0],

α̃(s)− α̂(s) = Γ̃uid 1E −
1

γ

∫ ŝ∗

s̃∗

cs
(
m̃(x)|x

)
dx−

1

γ

∫ s

ŝ∗

{
cs
(
m̃(x)|x

)
− cs

(
m̂(x)|x

)}
dx

≥ 0,

where Γ̃uid ≥ 0 by definition, the second term is nonnegative by cost monotonicity, and the
third term is nonnegative by (UID) and (b).

And for every s ∈ [0, s̃∗],

α̃(s)− α̂(s) = Γ̂uid 1E ′ +
1

γ

∫ ŝ∗

s̃∗
ct
(
x|m̂−1(x)

)
dx

+
1

γ

∫ s̃∗

s

{
ct
(
x|m̂−1(x)

)
− ct

(
x|m̃−1(x)

)}
dx

≥ 0,

where Γ̂uid ≥ 0 by definition, E ′ is the event in which only F̂ has low priority, the second
term is nonnegative by cost monotonicity, and the third term is nonnegative by (UID) and
(b).

• (a)⇒ (b). Suppose (a) holds, and consider the family of linear cost functions c(t|s) =
βγ|t− s|, for β > 0. By choosing β sufficiently low, we can ensure neither of the allocation
rules saturates the probability constraint. In this case, α̂β(s) > 0 if and only if F̂ has high
priority, but then (a) implies F̃ must have high priority as well. Similarly α̃β(s) < 1 if and

only if F̃ has low priority, and then (a) implies F̂ has low priority as well.
Then α̃β(s) = β(s− s̃∗) on [s̃∗, s̃

∗], and α̂β(s) = β(s− ŝ∗) on [ŝ∗, ŝ
∗]. By varying β from

0 to infinity, we have s̃∗ span [s̃∗(0), 0), and ŝ∗ span [ŝ∗(0), 0). For β sufficiently large, we
have both s̃∗ > s̃∗(0) and ŝ∗ > ŝ∗(0). Pick such a value of β, then by (a), we have

−βs̃∗ = α̃β(0) ≥ α̂β(0) = −βŝ∗,

so s̃∗ ≤ ŝ∗. Furthermore, for such a value of β, we must have

m̃(s̃∗) =
1

β
+ s̃∗ ≤

1

β
+ ŝ∗ = m̂(ŝ∗) ≤ m̂(s̃∗).

Varying β so s̃∗ spans [s∗(0), 0], this shows (b).

• (b)⇔ (c)⇔ (d). Since, for all s < 0, every x between m̃(s) and m̂(s) is nonnegative,

m̃(s) ≤ m̂(s) is equivalent to
∫ m̂(s)
m̃(s)

xdF̂ (x) ≥ 0. By definition of the matching functions,

∫ m̃(s)

s
xdF̃ (x) =

∫ m̂(s)

s
xdF̂ (x) = 0,

therefore

∫ m̂(s)

m̃(s)
xdF̂ (x)−

∫ m̃(s)

s
xdF̃ (x) =

∫ m̃(s)

s
xdF̃ (x)−

∫ m̃(s)

s
xdF̂ (x).

This shows the equivalence between (b) and (c). The inequality in (d) results from
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applying integration by parts to (c).

Proof of Proposition 7. We show the conditions of the proposition imply that, for every
z < 0 < y,

∫ 0
z

{
∆(z)−∆(x)

}
dx ≥ 0, and

∫ y
0

{
∆(y)−∆(x)

}
dx ≥ 0, which implies condition

(d) of Proposition 6.
If z < a, then

∫ 0

z

{
∆(z)−∆(x)

}
dx = −z∆(z)−

∫ 0

z
∆(x)dx ≥ −z∆(z)−

∫ 0

s
∆(x)dx ≥ 0,

where the first inequality is from (C1), and the second inequality is from (C3) and (C1)
as ∆(z) ≥ 0. If z ≥ a, then (C2) implies ∆(z) ≥ ∆(x) for every x ∈ [z, 0]. The proof is
symmetric for the integral from 0 to y.

Proof of Proposition 1. Let α̃∗(ŵ) denote the correspondence mapping ŵ to the set of solu-
tions of the baseline problem. By Lemma A.4, we can write (P̃) as an optimization problem
over the set of nondecreasing functions from S to [0, 1] satisfying (FPC) and (PC). This
space is compact by Helly’s theorem, and convex, and the objective function is linear and
therefore continuous in α. Hence, Berge’s maximum theorem implies α̃∗(ŵ) is a continuous
correspondence. By Theorem 1 and Theorem 2, the correspondence is singleton-valued for
ŵ 6= w̄, and for ŵ = w̄ if γ ≤ γ̄, so the continuity results with respect to ŵ follow.

The space of nondecreasing and feasible allocation rules is also a lattice with respect
to the partial order α � β ⇔ α(s) ≥ β(s), ∀s, with the corresponding strict ordering
α ≻ β if α � β and α(s) > β(s) for some s. Indeed, it is easy to see that, for two such
allocation rules α and β, their meet α ∧ β and their join α ∨ β are also nondecreasing
and feasible. Furthermore, the objective function is supermodular in α and has strictly
increasing differences in (−ŵ, α). Hence, by Milgrom and Shannon’s monotone selection
theorem (Milgrom and Shannon, 1994), α∗(·, ŵ, r) is strictly decreasing in ŵ for the � order
(recalling the allocation rule is independent of r for ŵ = w̄, the only role of r is to pin down
the selection at ŵ = w̄).

Furthermore, it is easy to see (by inspection) that α∗(s, w̄, r) is strictly decreasing in
r for every s, both in the (UID) and (UDD) cases. Together with the continuity of the
correspondence at ŵ = w̄, this implies the results on the left and right limits of α(·, ŵ, r) as
ŵ → w̄.

Proof of Corollary 1. This result follows almost directly from Proposition 1. To complete
the argument, we only need to notice that, since the solution α∗(s, ŵ, r) is continuous in s,
the result that α∗(·, ŵ, r) ≻ α∗(·, ŵ′, r) for ŵ < ŵ′, implies α∗(s, ŵ, r) > α∗(s, ŵ′, r) for all s
on a subinterval of S, so A∗(ŵ, r) > A∗(ŵ′, r).

Proof of Theorem 3. The function w(s) is bounded by assumption. Let w− = w(s) and
w+ = w(s) be its bounds. Then it is easy to see α∗(s,w−, r) = A∗(w−, r) = 1 and
α∗(s,w+, r) = A∗(w+, r) = 0. By the continuity and strict monotonicity results of Corol-
lary 1, it follows that there exists a unique value of ŵ ∈ [w−, w+], and, if ŵ = w̄, a unique
value of r ∈ [0, 1], such that A∗(ŵ, r) = ρ/µ, for any ρ ∈ [0, µ]. By Lemma 3, α∗(·, ŵ, r) is
then the unique solution to the within problem (P).

The continuity and monotonicity results of Corollary 1 also imply continuity and mono-
tonicity of ŵ(ρ) and r(ρ).
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By Lemma 3, W (ρ) is concave on [0, µ], and since ŵ(ρ) is unique, it is differentiable
everywhere, and W ′(ρ) = ŵ(ρ)/µ. In particular, W (ρ) is strictly concave at every ρ such
that ŵ(ρ) is strictly decreasing, that is whenever ŵ(ρ) 6= w̄ or γ ≤ γ̄.

Proof of Theorem 4. The objective function of the across problem is continuous and concave
in ρ by Theorem 3, and the feasible set is nonempty, compact and convex. Therefore, it
admits a solution characterized by the Kuhn-Tucker conditions (i)-(iii), recalling that, by
Theorem 3, W ′

i (ρi) = ŵi(ρi)/µ, and the outside option value ŵi(ρi) is the one that solves the
within problem as defined by (iv). The condition for uniqueness holds because the objective
function is then strictly concave by Theorem 3.

Proof of Proposition 2. Increasing γi shrinks the set of feasible allocation rules in the origi-
nal problem, therefore weakly decreases its value functionW . Suppose F̃i first-order stochas-
tically dominates Fi, and let F x

i = xF̃i + (1− x)Fi. Then F x
i increases with x in the FOSD

order.
Consider the within problem for group i under the score distribution F x

i . To clarify the
dependence on x, we denote its value function by Wi(ρi|x) in this proof. By Lemma 3,

Wi(ρi|x) = min
ŵ∈[w−,w+]

max
α

∫

Si

α(s){wi(s)− ŵ}dF x
i (s) + ŵρi/µi,

and
(
α∗
i (·, ŵi(ρi), ri(ρi)|x), ŵi(ρi)

)
is the unique solution to this saddle-point problem. In

what follows, let α∗
i (s) denote the function α∗

i (·, ŵi(ρi), ri(ρi)|x)
Let L(α, ŵ, x) =

∫

Si
α(s){wi(s) − ŵ}dF x

i (s) + ŵρi/µi be the objective function. It is
continuously differentiable in x since it is linear. Furthermore, the saddle-point problem
admits a solution for every x ∈ [0, 1] by Theorem 3. The interval [w−, w+] and the space of
nondecreasing continuous functions in which α is taken is also compact by Helly’s selection
theorem. Therefore, we can apply the envelope theorem for saddle-points of Milgrom and
Segal (2002, Theorem 5), and our uniqueness result to obtain that Wi(ρi|x) is differentiable
in x, and

∂Wi(ρi|x)

∂x
=

∂L
(

α∗
i

(
·, ŵi(ρi), ri(ρi)

)
, ŵi(ρi), x

)

∂x

=

∫

Si

α∗
i (s){wi(s)− ŵi(ρi)}dF̃i(s)−

∫

Si

α∗
i (s){wi(s)− ŵi(ρi)}dFi(s).

Using the differential form, we have:

∂Wi(ρi|x)

∂x
=

∫

Si

α∗′
i (s)

(

W̃i(s, ŵi(ρi))−Wi(s, ŵi(ρi))
)

ds.

Next, we show this must be nonnegative. Indeed, note first

W̃+
i (s, ŵi(ρi))−W

+
i (s, ŵi(ρi)) =

(
1− F̃i(s)

)
∫ si

s

{
wi(y)− ŵi(ρi)

}
d

F̃i(y)

1− F̃i(s)

−
(
1− Fi(s)

)
∫ si

s

{
wi(y)− ŵi(ρi)

}
d

Fi(y)

1− Fi(s)
.

By first-order stochastic dominance, 1 − F̃i(s) ≥ 1 − Fi(s), and the stochastic dominance
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ordering of the conditional distributions on [s, si] is preserved since F̃i(y)

1−F̃i(s)
≤ Fi(y)

1−Fi(s)
. Since

wi(·) is an increasing function, this implies

W̃+
i (s, ŵi(ρi))−W

+
i (s, ŵi(ρi)) ≥ 0.

If w̄Fi
≤ w̄F̃i

≤ ŵi(ρi), then the group has low or neutral priority under both distri-
butions. Using the differential version of the objective function (DOF), the difference in
welfare is given by

∫ si

si

α∗′
i (s)

{
W̃+
i (s, ŵi(ρi))−W

+
i (s, ŵi(ρi))

}
ds.

Since α∗′
i (s) ≥ 0, and the difference in cumulative surplus is positive, then ∂Wi(ρi|x)

∂x ≥ 0.
Suppose instead, w̄Fi

≤ ŵi(ρi) ≤ w̄F̃i
, so the shift in score distributions switches the

priority of the group. Then, using (DOF) for Fi, (DOF) for F̃i, and the relationship
W−(s, ŵ) =W+(s, ŵ)− (w̄ − ŵ), we can write the welfare change as

(
w̄F̃i
− ŵi(ρi)

)

(

1−

∫ si

si

α∗′
i (s)ds

)
∫ si

si

α∗′
i (s)

{
W̃+
i (s, ŵi(ρi))−W

+
i (s, ŵi(ρi))

}
ds,

where the second term is positive for the same reasons as in the previous case, and the first
term is equal to

(
w̄F̃i
− ŵi(ρi)

)
α∗′
i (si) ≥ 0. Hence, again, ∂Wi(ρi|x)

∂x ≥ 0.
Suppose finally ŵi(ρi) ≤ w̄Fi

≤ w̄F̃i
so the priority is high under both distributions.

Then, using (DOF)and the relationship W−(s, ŵ) =W+(s, ŵ)− (w̄ − ŵ), we can write the
welfare change as

(
w̄F̃i
− w̄Fi

)

(

1−

∫ si

si

α∗′

i (s)ds

)
∫ si

si

α∗′

i (s)
{
W̃+
i (s, ŵi(ρi))−W

+
i (s, ŵi(ρi))

}
ds,

and both terms are positive, and then ∂Wi(ρi|x)
∂x ≥ 0.

Now, consider the across problem. Applying the (classical) envelope theorem to this
problem, and letting ρ∗ denote its unique solution, we obtain

∂W (x)

∂x
= µi

∂Wi(ρ
∗
i |x)

∂x
≥ 0.

Proof of Proposition 8. Consider the problem of the decision maker deciding how to allocate
objects. She can only condition her decision on the group label, and the signal provided
by the designer’s chosen information structure. Under the information structure that rec-
ommends allocation with probability α∗

i (s) and rejection otherwise, let gi ∈ [0, 1] be the
probability that the decision maker allocates an object to members of group i with a posi-
tive recommendation, and bi ∈ [0, 1] the probability that she allocates an object to members
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of group i with a negative recommendation. Her problem is

max
(g,b)

∑

i

µi

{

gi

∫

Si

α∗
i (s)w̃i(s)dFi(s) + bi

∫

Si

(
1− α∗

i (s)
)
w̃i(s)dFi(s)

}

s.t.
∑

i

µi {giA
∗
i + bi(1−A∗

i )} ≤ ρ̄

µi {giA
∗
i + bi(1−A∗

i )} ≥ φiρ̄ ∀i.

Then, α∗ is obedient if choosing (goi , b
o
i ) = (1, 0) for every i is a solution to the decision

maker’s program. Since the program of the decision maker is linear, global optimality is
implied by local optimality. So, to check obedience, we only need to verify that (go, bo) is
a local optimum.

This is the case if the decision maker is perfectly aligned with the designer, w̃i = wi.
Indeed, for (gi, bi) in the neighborhood of (goi , b

o
i ), we have 1 ≥ gi − bi ≥ 0, therefore the

effective allocation rule implemented by the decision maker is αi(s) = bi
(
1−α∗

i (s)
)
+giα

∗
i (s).

It satisfies falsification-proofness since

0 ≤ αi(t)− αi(s) = (gi − bi)
(
α∗
i (t)− α∗

i (s)
)
≤ α∗

i (t)− α∗
i (s) ≤

1

γi
ci(t|s),

and could therefore have been implemented by the designer in our original problem, so it
must be suboptimal.

In fact, (go, bo) is uniquely optimal when preferences are aligned. Again, we only need to
check that locally. Indeed, for any (gi, bi), the resulting effective allocation rule αi is in the
family of possibly optimal rules α∗

i (·, ŵ, r) if and only if (gi, bi) = (goi , b
o
i ). Indeed, it is true

for (goi , b
o
i ), and if (gi, bi) 6= (goi , b

o
i ), then αi has the same growth interval as α∗

i . However,
for ŵ 6= w̄, each α∗

i (·, ŵ, r) has a distinct growth interval. If α∗
i = α∗

i (·, w̄, r) for some r,
then the only possibility for αi to be possibly optimal is if αi = α∗

i (·, w̄, r
′) for r′ 6= r. But

then, αi and α∗
i must differ by an additive constant, which contradicts the definition of αi.

Suppose then that the decision maker is not perfectly aligned with the designer. We let

Gi(w̃i) =

∫

Si

α∗
i (s)w̃i(s)dFi(s),

and

Bi(w̃i) =

∫

Si

(
1− α∗

i (s)
)
w̃i(s)dFi(s),

be the linear coefficients corresponding to gi and bi in the decision maker’s objective function.
Then, we have, for every i,

∣
∣Gi(w̃i) − Gi(wi)

∣
∣ < εA∗

i , and
∣
∣Bi(w̃i) − Bi(wi)

∣
∣ < ε(1 −

A∗
i ). Therefore, we can choose ε sufficiently small to ensure that every strict inequality

holding between any pair among the scalars {0}∪
⋃

i∈I

{
Bi(wi), Gi(wi)

}
also holds for {0}∪

⋃

i∈I

{
Bi(w̃i), Gi(w̃i)

}
, regardless of w̃i.

Suppose, by contradiction, that (goi , b
0
i ) is not optimal for the decision maker with pref-

erences given by w̃. Then either one of the following local deviations must be strictly
beneficial for the decision maker. For each of them, we show it leads to a contradiction.

(a) Slightly decreasing gi from g0i = 1: For that to be strictly beneficial, it must be that
Gi(w̃i) < 0, therefore Gi(wi) ≤ 0. However, this can only be true if the quota constraint
is binding for i at (go, bo), or it would contradict the strict optimality of (go, bo) under
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wi. But then decreasing gi is infeasible as it violates the quota for i.

(b) Slightly increasing bi from boi = 0: This is strict beneficial only if Bi(w̃i) > 0, implying
Bi(wi) ≥ 0. Then the resource constraint must be binding at (go, bo), or it would
contradict the strict optimality of (go, bo) under wi. Therefore this deviation is not
feasible as it would violate the resource constraint.

(c) Decreasing gi and increasing bi so as to keep the mass of objects allocated to group i
constant: For this to be strictly beneficial, it must be that Gi(w̃i) < Bi(w̃i), implying
Gi(wi) ≤ Bi(wi). The same deviation would then be feasible and weakly beneficial at
wi contradicting the strict optimality of (go, bo).

(d) Decreasing gi and increasing bj for j 6= i while keeping the total mass of objects allocated
constant: Then Gi(w̃i) < Bi(w̃j), implying Gi(wi) ≤ Bi(wj). This can only hold if the
quota constraint of group i is binding at (go, bo), for otherwise it would contradict the
strict optimality of (go, bo) at wi. But then this deviation is infeasible.

C Algorithm for the across problem

We present an algorithm that finds a solution to the across problem. We extend the defi-
nition of ŵφi as the unique value of ŵ such that µiA

∗
i (ŵ, r) = φiρ̄ for some r, and let rφi be

the unique value of r that satisfies this equality if ŵφi = w̄i (otherwise let rφi be any value
on [0, 1]).

Algorithm 2: Algorithm to solve the across problem

∀i, ρ0i ← µiA
∗
i (0, 1);

R0 ←R(ρ0);
Q0 ← Q(ρ0);
k ← 0;
repeat

k ← k + 1;

∀ℓ ∈ Qk−1, ŵkℓ ← ŵφℓ and rkℓ ← rφℓ ;

if Rk−1 = 0 then

∀ℓ /∈ Qk−1, ŵkℓ ← 0 and rkℓ ← 1;
else

ŵ, r ← Solution of:
∑

ℓ∈Qk−1 φℓρ̄+
∑

i/∈Qk−1 µiA
∗
i (ŵ, r1ŵ=w̄i

) = ρ̄;

∀ℓ /∈ Qk−1, ŵkℓ ← ŵ and rkℓ ← r1ŵ=w̄ℓ
;

end

∀i, ρki ← µiA
∗
i (ŵ

k
i , r

k
i );

Rk ←R(ρk);

Qk ← Q(ρk);

until Qk = Qk−1 and Rk = Rk−1;

54



We did not specify how to find a solution (ŵ, r) to

∑

ℓ∈Qk−1

φℓρ̄+
∑

i/∈Qk−1

µiA
∗
i (ŵ, r1ŵ=w̄i

) = ρ̄

within the algorithm. Note, however, that the left-hand side of the equation can be decreased
continuously by continuously raising ŵ whenever ŵ 6= w̄i, for all i, and by continuously
raising r from 0 to 1 and keeping ŵ constant whenever ŵ = w̄i for some i. Therefore a
simple algorithm can solve this equation.

Proposition 9. Algorithm 2 finds a solution of (P) in finitely many steps.

Proof. The sequence (Qk, Rk) is increasing and bounded above by (I, 1) in the (⊆,≤) order
on 2I × {0, 1}, so the algorithm stops in finitely many steps. Let k be the step at which
it stops. Let λR = ŵki and λi = 0 for all i /∈ Qk. This is consistent since ŵki must be
equal across all i /∈ Qk. Let λℓ = λR − ŵkℓ for ℓ ∈ Qk. Then it is easy to verify the vector
of multipliers λ, ρk, ŵk and rk satisfy all the conditions of Theorem 4. Therefore ρk is a
solution to the across problem.

D Continuum as a single-agent.

In this appendix, we explain why treating the continuum as a single agent is without loss
of generality. The continuum of agents is interpreted as a limit case where the size of the
population becomes arbitrarily large. We already discussed why there is no loss of generality
in considering allocation rules that only depend on the observed score profile and group
identity. In the finite population case, an agent j in group i then receives the good with ex
post allocation probability αi,j(sj, s−j). As often in mechanism design, the problem can be
reformulated as one of choosing interim allocation probabilities αi,j(sj) = Es−j

αi,j(sj , s−j).
Furthermore, given the symmetry of our setup, we can assume symmetry across agents of
the same group, so we can write αi(s) for the interim allocation probability for an agent with
score s in group i. Then the interim problem of optimizing over symmetric interim allocation
rules in any finite population is exactly the program we solve in the continuum.16 However,
to find a solution to the initial program, we need to ensure that the interim allocation rules
that solve the interim program are feasible in the sense that they can be obtained from an ex
post allocation rule. In the finite population case, the exact condition for this to be possible
can be derived from Che, Kim, and Mierendorff (2013) which generalizes the condition of
Border (1991) to setups with multiple goods and quotas. In the limit case of the continuum,
however, the interim rules can be used directly as ex post allocation rules that only depend
on each agent’s score, so feasibility is automatically satisfied.

16The same approach is used in Mylovanov and Zapechelnyuk (2017).
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