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S1 Covert falsification: omitted results, proofs

S1.1 Preliminary results

Lemma S1.1 (Recommendation principle). Let (φ, α) be an equilibrium under

test τ . Then, (φ, δA) is an equilibrium under the test ατ with signal space X = A.

Furthermore, the outcomes of both equilibria are identical.

Proof of Lemma S1.1. The last point is immediate since δA(ατ)φ = ατφ. Then,

first note

µ(a|ατ, φ) =

∫
X×S α(a|x)µ(x|τ, φ)dτφπ

ατφπ({a} × S)
≥ 0

and

µ(r |ατ, φ) =

∫
X×S α(r |x)µ(x|τ, φ)dτφπ

ατφπ({r} × S)
≤ 0

because α is a best-response to φ under τ . Therefore, δA is a best-response to φ

under ατ . Next note

Π
(
δA(ατ)φ′

)
−C(φ′) = Π

(
ατφ′

)
−C(φ′) ≤ Π

(
ατφ

)
−C(φ) = Π

(
δA(ατ)φ

)
−C(φ),

so φ is a best-response to δA under ατ .

Lemma S1.2 (Equivalence of ex-ante and interim falsification). An agent’s fal-

sification strategy satisfies (EF’) if and only if it satisfies (IEF) for almost every

s.

Proof of Lemma S1.2. Sufficiency is immediate, so we prove necessity. Suppose a

set of states S ′ with π(S ′) > 0 exists such that for every s ∈ S ′, φ
(
argmaxt τ(t)−

γc(t|s)|s
)
< 1. Then, for every s ∈ S ′, a state t(s) exists such that τ(t(s)) −

γc(t(s)|s) >
∫
suppφ(s)

{τ(t)− γc(t|s)}dφ(t|s). Suppose the agent deviates to

φ̃ =

δt(s) for s ∈ S ′

φ(s) otherwise .

Because this deviation is covert, the receiver’s behavior stays the same. Given

that S ′ has strictly positive measure, the agent’s payoff strictly increases:∫
S×S

{
τ(t)− γc(t|s)

}
dφ̃π(t, s) >

∫
S×S

{
τ(t)− γc(t|s)

}
dφπ(t, s),
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so that φ cannot satisfy (EF’).

S1.2 Comparative statics

Proof of Proposition 2. In this proof, we let ωγ,p,ŝ denote the outcome function

ωp,ŝ to highlight its dependence on the cost parameter γ. We consider an increase

from γ to γ′ > γ that remains in the same cost region.

In the low-cost region, we have τ ∗γ′(s) > τ ∗γ (s) for all s > s0, whereas all

other states are rejected with certainty under both values. This change is strictly

beneficial for the agent. For the receiver, note first that ω∗γ′ must, by definition,

deliver a higher payoff than ωγ′,p∗γ ,s. Next, note ωγ′,p∗γ ,s assigns the same approval

probabilities as ω∗γ to all compliant states but lower (strictly for a positive mass)

approval probabilities to noncompliant states, and therefore gives the receiver a

strictly higher payoff.

In the intermediate-cost region, ω∗γ′ assigns the same approval probability as

ω∗γ to compliant states but a lower one to all noncompliant states (strictly for a

positive mass of them). Therefore, the receiver’s payoff increases. We also have

τ ∗γ′(s) ≤ τ ∗γ (s) with a strict inequality for a positive mass of states. The agent is

therefore worse off under γ′.

In the high-cost region, the receiver gets her first-best payoff, which is inde-

pendent of γ. For the agent, we have τ ∗γ′(s) ≥ τ ∗γ (s) with a strict inequality for a

positive mass of states, so she is better off under γ′.

S1.3 Characterization of optimal tests

We provide a characterization of optimal tests that shows, in particular, productive

falsification is needed for optimality. To simplify exposition, we exclude from the

proposition the case in which µπ = 0. Indeed, this case has multiple tests from

the class τp,ŝ that are optimal in the low-cost region γc(s|−s) ≤ 1. Then, any test

τp,s with p ∈ [p∗γ, 1] is optimal. When µπ 6= 0, the optimal test within our class is

unique.

Proposition S1.1. Suppose µπ 6= 0. A test τ is such that, for some falsification

strategy φ, (τ, φ) solves (P), and U(τφ, φ) ≥ U∗γ if and only if:

(i) For a.e. s ∈
[
−s, 0

)
∪
(
ŝ∗γ, s

]
, τ(s) = τ ∗γ (s) .

(ii) For every s ∈
[
−s, s

)
, τ(s) ≤ τ ∗γ (s).
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(iii) τ
(
ŝ∗γ
)

= p∗γ.

Furthermore, it is then the case that for a.e. s, φ(s) = φ∗γ(s).

Proof.

Sufficiency. Suppose τ satisfies (i)-(iii). We show φ∗γ satisfies (EF’) under τ . It

is then easy to see that τφ∗γ(s) = ω∗γ(s) a.e., which implies the result.

Let T = {s ∈ S : τ(s) 6= τ ∗γ (s)}. First, consider s ∈ S r T . Then, φ∗γ satisfies

(IEF) at s under τ since, first, s can still not falsify and get the same payoff as

under τ ∗γ because s /∈ T ; and second, by (ii), no other falsification targets yield

higher payoff under τ than under τ ∗γ .

Next, consider s ∈ T ∩
[
0, ŝ∗γ

)
. Then, φ∗γ satisfies (IEF) at s under τ because,

first, s can still falsify to the standard and get the same payoff as under τ ∗γ by

(iii); and second, by (ii), no falsification targets that a higher payoff under τ than

under τ ∗γ .

By (i), T ∩
([
−s, 0

)
∪
(
ŝ∗γ, s

])
has measure 0. Therefore, we have shown φ∗γ

satisfies (IEF) almost everywhere under τ , and we can conclude by Lemma S1.2.

Necessity. Let ω = τφ be an equilibrium outcome that satisfies V (ω) = V ∗γ and

U(ω, φ) ≥ U∗γ . To prove necessity, we apply to τ the construction in the first step

of the proof of Theorem 1. We refer to this construction as C. Because we can

easily see that when optimizing within our class of tests, the solution is always

unique if µπ 6= 0, applying C to τ must yield τ ∗γ .

Let Ti = {s ∈
[
−s, 0

)
∪
(
ŝ∗γ, s

]
: τ(s) 6= τ ∗γ (s)} and Tii = {s ∈ S : τ(s) > τ ∗γ (s)}.

We show Ti must have measure 0, Tii = ∅, so (i) and (ii) must hold, and τ must

satisfy (iii).

For every s ∈ Tii, we must have τ(s) ≤ p∗γ; otherwise, we could apply C to get a

test τp,ŝ in our class with p > p∗γ, that is τp,ŝ 6= τ ∗γ , a contradiction. This argument

implies Tii ⊆
[
−s, ŝ∗γ

)
.

Suppose t ∈ Tii exists such that t < 0. Then, note that for every s, we must

have

ω(s) ≥ sup
t̃

τ(t̃)− γc(t̃|s) ≥ τ(t)− γc(t|s),

and because τ(t) − γc(t|s) is continuous in s, and ω(t) ≥ τ(t) > τ ∗γ (s) = ω∗γ(s),

a neighborhood N of t exists such that for every s ∈ N , ω(s) > ω∗γ and s < 0.

Hence, states in N are noncompliant and get a strictly higher approval probability

under ω than under ω∗γ. Because applying C to τ must yield the outcome ω∗γ, this

argument shows V (ω) < V ∗γ , a contradiction. Hence, Tii ⊆
[
0, ŝ∗γ

)
.
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Next, fix some sufficiently small ε > 0. We show Tii ⊆
(
ŝ∗γ − ε, ŝ∗γ

)
. For

illustration, let T̃ = Tii ∩
[
0, ŝ∗γ − ε

]
. Then, we must have p̃ = supt∈T̃ τ(t) < p∗γ,

because C would otherwise yield a test τp,ŝ 6= τ ∗γ . Take s̃ ∈ T̃ and let N ⊆
[
0, ŝ∗γ−ε

]
be a small neighborhood of s̃. Then, the payoff of falsifying to some target t > ŝ∗γ−ε
for any s ∈ N is bounded above by p∗γ−c

(
ŝ∗γ−ε|s), which is itself strictly lower than

τ
(
s̃
)
, when both N and ε are sufficiently small. Therefore, states in N must be

falsifying to targets below ŝ∗γ − ε, implying their equilibrium approval probability

ω(s) is at most p̃ < p∗γ. But then, because these states are positive, V (ω) < V ∗γ , a

contradiction.

Overall, we have that, for every ε > 0 sufficiently small, Tii ⊆
(
ŝ∗γ − ε, ŝ∗γ

)
.

This finding implies Tii = ∅, so (ii) must hold.

Because C must yield τ ∗γ , a sequence sn of states must exist that converges to

ŝ∗γ and such that τ(sn) converges to p∗γ. Because Tii is empty, falsifying to sn gives

to any s ∈ [0, ŝ∗γ
)

a payoff that converges to p∗γ− c
(
ŝ∗γ|s

)
, which is an upper bound

on what s can achieve by falsifying under τ . To ensure an optimal falsification

strategy exists for s that does as well as this sequence, it must be the case that

τ
(
ŝ∗γ
)

= p∗γ, so (iii) must hold.

Next suppose an open interval I of noncompliant states exists such that I ⊆ Ti.

Then, for every state s ∈ I, τ(s) < τ ∗γ (s), so falsifying to ŝ∗γ yields a strictly

higher payoff than truth-telling, and because (ii) holds, this falsification strategy is

optimal for s. Therefore, under ω, all states in s ∈ I are approved with probability

ω(s) = p∗γ > ω∗γ(s), implying V (τφ) < V ∗γ , a contradiction. Hence, Ti ∩
[
−s, 0

)
has measure 0.

Next, suppose an open interval I ⊆ Ti∩
(
ŝ∗γ, s

]
of states exists. For every s ∈ I,

τ(s) < p∗γ, and the only way that ω is a receiver-optimal outcome is if each of these

states falsifies to some other state t with τ(t) = p∗γ. However, this argument implies

falsifying outside of I, and falsifying all states in I to states outside of I has a

strictly positive falsification cost. This observation implies the overall falsification

cost under φ exceeds the overall falsification cost, whereas all states obtain the

same outcome as under ω∗γ. Therefore, U(ω, φ) < U∗γ , a contradiction. Therefore,

Ti ∩
(
ŝ∗γ, s

]
must also have measure 0, so (i) must hold.

S1.4 Upward-only falsification

We show the test of Theorem 1 remains optimal if, instead of (CTT), we assume

falsification is upward-only ; that is, the agent can only falsify state s as states in
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[s, s].

Theorem S1.1. Suppose the cost function satisfies (UTI) and that falsification is

upward-only. Then, (τ ∗γ , φ
∗
γ) solves (P).

Proof. Optimization within our class of tests is exactly as in the proof of Theo-

rem 1. We show how to adapt the first part of the proof that shows optimality of

our class of tests.

Suppose (τ, φ) satisfies (IEF). Let p = sups∈S+ τ(s), which exists because τ(·)
is bounded. For every ε > 0, let S+(ε) =

{
s ∈ S+ : τ(s) ≥ p − ε

}
, and let

S̄+(ε) be the closure of S+(ε). By definition of p, each S+(ε), and hence each

S̄+(ε), is nonempty. Furthermore, S̄+(ε) is clearly nonincreasing in ε for the

inclusion order. Therefore, by Cantor’s intersection theorem, S̄+ =
⋂
ε>0 S̄

+(ε) is

a nonempty compact subset of S+.

If some s ∈ S+ exists such that γc(s|0) ≥ p, we can set ŝ ∈ S+ to be the unique

state such that γc(ŝ|0) = p. Then, under ωp,ŝ, every compliant state is approved

with probability p, whereas every noncompliant state is rejected with certainty,

making the receiver at least as well off as under τφ.

Otherwise, we let ŝ be the minimal element of S̄+. Then, under ωp,ŝ, every

compliant state is approved with probability p. Because falsification is upward

only, p is at least as high as under the approval probability of any compliant state

under τφ. Next, we show noncompliant states pass with lower probability under

ωp,ŝ. For illustration, let {tn} be a sequence of compliant states that converges

to ŝ and such that the sequence pn = τ(tn) converges to p. Such a sequence

exists, because ŝ ∈ S̄+. Then, for every noncompliant state s, and every n,

supt τ(t)− γc(t|s) ≥ pn − γc(tn|s). Going to the limit in n implies

ω(s) ≥ sup
t

τ(t)− γc(t|s) ≥ p− γc(ŝ|s) = ωp,ŝ(s),

which proves the point.

Since noncompliant states are approved with lower probability, and compliant

states with higher probability, the receiver is better off under ωp,ŝ than under

ω.
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S2 Overt falsification: omitted results, proofs

S2.1 Equilibrium definition in the overt case

Note our definitions and notations in the modeling section carry on to any setup

with a state space S ⊆
[
−s, s

]
. Next, we add a few notations and provide a formal

definition of an equilibrium in the overt case.

In the overt case, an approval strategy is a falsification-contingent plan, which

we can denote as a family
{
αφ′
}
φ′

, where, for each possible falsification strategy

φ′, αφ′ is a Markov kernel from X to A. The natural equilibrium concept is simply

subgame-perfect equilibrium. Given a test τ , a strategy profile
(
φ,
{
αφ′
}
φ′

)
is an

equilibrium if:

(i) For every φ′, αφ′(x) = δa if µ(x|τφ′) > 0, and αφ′(x) = δr if µ(x|τφ′) < 0,

(ii) For every φ′, U(αφτφ, φ) ≥ U(αφ′τφ
′, φ′).

To ensure the agent’s payoff is upper semicontinuous in φ, we can break the

receiver’s indifference in his favor, and assume she approves when her posterior

mean is 0 that is, we can set the strategy of the receiver to {ᾱτφ′}φ′ , where

ᾱτφ′(x) =

δa if µ(x|τφ′) ≥ 0

δr if µ(x|τφ′) < 0
.

Then, we say φ is overt equilibrium-feasible under τ , or that the pair (τ, φ) is overt

equilibrium-feasible if

∀φ′, U(ᾱτφτφ, φ) ≥ U(ᾱφ′τφ
′, φ′). (OEF)

S2.2 Falsification-proofness principle

Although we only use the falsification-proofness principle with two states for overt

falsification in the paper, it also holds for covert falsification. The following propo-

sition presents its most general version. We also provide an example to illustrate

why having more than two states may lead the principle to fail.

Proposition S2.1 (Falsification-proofness principle). Suppose falsification is cost-

less or the state space is binary. Then, if (τ, φ) is (covert or overt) equilibrium

feasible, the test τ ′ = τφ and the truth-telling strategy δ also form an equilibrium
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feasible pair, with the same approval strategy α in the unobservable case. Further-

more, by definition, V (τφ) = V (τ ′δ) and Π(ατ ′δ) = Π(ατφ).

Proof. Overt case. First consider a test τ and a falsification strategy φ such

that (τ, φ) is overt equilibrium-feasible. Consider replacing τ by the test τ ′ = τφ.

Then, the payoff of truth-telling under τ ′ is U(ᾱτφτφ, δ) = Π(ᾱτφτφ), and the

payoff of using any other falsification strategy φ′ is

Π(ᾱτφφ′τφφ
′)− C(φ′) = U(ᾱτφφ′τφφ

′, φφ′) + C(φφ′)− C(φ′)

≤ U(ᾱτφτφ, φ) + C(φφ′)− C(φ′)

= Π(ᾱτφτφ)− C(φ) + C(φφ′)− C(φ′).

Therefore, a sufficient condition for (τφ, δ) to be equilibrium feasible is that

C(φφ′) ≤ C(φ) + C(φ′).

Covert case. Next, consider a test τ and suppose (φ, α) is an equilibrium with

covert falsification under τ . Consider replacing τ by the test τ ′ = τφ and keeping

the same approval strategy α. Note that, under this new test, α is a best-response

of the receiver to the agent telling the truth. Fixing α, the payoff of telling the

truth under this new test is given by U(ατφ, δ) = Π(ατφ), and the payoff of

deviating to φ′ when δ is anticipated is given by

Π(ατφφ′)− C(φ′) = U(ατφφ′, φφ′) + C(φφ′)− C(φ′)

≤ U(ατφ, φ) + C(φφ′)− C(φ′)

= Π(ατφ)− C(φ) + C(φφ′)− C(φ′),

where the inequality is due to the hypothesis that (φ, α) is an equilibrium under

τ . Therefore, we obtain the same sufficient condition for (τφ, δ) to be equilibrium

feasible as in the observable case.

Satisfying the sufficient condition. The sufficient condition is trivially satisfied

when falsification is costless. In the binary-state case, letting c = γc(s| − s),

c = γc(−s|s), and, for any falsification strategy φ, φ = φ(s|−s), and φ = φ(−s|s),
we have

C(φφ′) = πc
{
φ′(1− φ) + (1− π)φ(1− φ′)

}
+ c
{
φ(1− φ′) + φ

′
(1− φ)

}
≤ πc

{
φ′ + (1− π)φ

}
+ c
{
φ+ φ

′}
= C(φ) + C(φ′).
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Remark 1. When it applies, our falsification-proofness principle resembles the

standard revelation principle that applies when falsification is costless, but differs

in subtle ways. Indeed, whereas the outcome τφδ is the same as τφ, and the

receiver’s payoff is therefore the same under (τ, φ) and under (τφ, δ), the agent’s

payoff is higher under (τφ, δ) because he saves on falsification costs. A test designer

can therefore restrict attention to falsification-proof tests whenever her objective

only depends on the outcome, or is nondecreasing in the payoffs of the agent and

the receiver. �

Example 1 (Failure of the falsification-proofness principle). The reason the suf-

ficient condition C(φφ′) ≤ C(φ) + C(φ′) generally fails with more than two states

can be easily understood in a three-state example. Suppose S = {−3, 1, 3}, and φ

falsifies 1 as 3 with certainty, whereas φ′ falsifies -3 as 1 with certainty. Then,

φφ′ consists of falsifying both -3 and 1 as 3. Under any monotonic cost function,

falsifying -3 as 3 is costlier than falsifying -3 as 1. Therefore, the sufficient con-

dition is violated. Next, we illustrate how that can indeed lead to an optimal test

that is not falsification-proof.

Suppose the prior on the same state space S is π = {1/2, 1/4, 1/4} and fal-

sification costs are given by c(t|s) = |t − s|/5. Note that falsifying -3 as 3 is

never worthwhile for the agent, because it costs 6/5 > 1. Consider the deter-

ministic binary-signal test τ that maps state 3 to the approve signal, and other

states to the reject signal. Let φ be the strategy falsifying 1 as 3 with probability

1, which is easily seen to be equilibrium feasible under τ , both in the covert and

overt cases. Note (τ, φ) gives the receiver her first-best payoff because all compli-

ant states are approved and all noncompliant states are rejected. In particular,

the receiver prefers (τ, φ) to (τ, δ), illustrating how falsification does not necessar-

ily garble information, and may benefit the receiver. Then, the test τ ′ = τφ is

one that sends the approve signal whenever the state is compliant, and the reject

signal otherwise. The optimal falsification strategy under τ ′ is to falsify -3 as 1

with probability 1 in the covert case, and with probability 2/3 in the overt case,

implying truth-telling δ cannot be an equilibrium falsification strategy under τ ′ in

either case. �
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S2.3 Normalization of signals as means

Consider a test τ . The corresponding cdf of conditional means in the absence of

falsification is given by

H(y) = τ
(
{x ∈ X : Eτπ(s|x) ≤ y} × S

)
.

To this cdf, we can associate a unique test τ̂ with signal space X̂ = [−s, s] such

that the cdf of conditional means generated by τ̂ is also H. This test is the one that

pools together all signals that lead to the same posterior mean under τ , and relabels

the pooled signal as this common mean. It is unique because τ̂ is characterized

by τ̂
(
{x ∈ X̂ : x ≤ y}|s

)
= H(y), and τ̂

(
{x ∈ X̂ : x ≤ y}| − s

)
= H(y), where H

and H are respectively given by (CDF), and (CDF). Then, τ̂ is the normalization

by the mean of τ .

Lemma S2.1 (Normalization of signals as means). For any falsification strategy

φ′, τ̂ leads to the same interim approval probabilities τ : ατ̂φ′ τ̂φ
′(s) = ατφ′τφ

′(s);

and generates the same payoffs for the agent and the receiver: U(τφ′, φ′) = U(τ̂φ′, φ′)

and V (τφ′) = V (τ̂φ′). In particular, if (τ, φ) is an equilibrium-feasible information

structure, so is (τ̂ , φ).

Proof. We start by noting that, for every x̂ ∈ X̂, τ̂ is just pooling together all

signals x ∈ X such that µ(x|τ) = x̂, and relabelling the corresponding signal as x̂.

Let X(x̂) = {x ∈ X : µ(x|τ) = x̂} be the set of signals that are pooled together.

Then, for each x̂ < s and each x ∈ X(x̂
)
, the likelihood ratio λ(x; τ) informally

defined as τ(dx|s)
τ(dx|−s) exists and, by Bayes law, must satisfy

λ(x; τ) =
(1− π)(x̂+ s)

π(s− x̂)
.

Given that the right-hand side does not depend on x, the ratio is fully determined

by the posterior mean x̂ associated with signal x.

With falsification, we obtain:

λ(x; τφ′) =
τ(dx|s)

φ′τ(dx|s) + (1− φ′)τ(dx| − s)(x)
=

λ(x; τ)

φ′λ(x; τ) + 1− φ′

for all x ∈ X(x̂). Again, the likelihood ratio only depends on x̂, and therefore, we

also have µ(x|τφ′) = µ(x̂|τ̂φ′). In particular, a signal x ∈ X(x̂) is approved under
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τφ′ if and only if x̂ is approved under τ̂φ′. Because, for any φ′ and any s ∈ S, we

have τφ′
(
X(x̂)|s

)
= τ̂φ′(x̂|s), the rest follows easily.

S2.4 Other proofs

Proof of Lemma 2. Using the formulas from the proof of Lemma S2.1, the likeli-

hood ratio informally defined by λ(x) = dH(x)
dH(x)

exists for every x < s and satisfies

λ(x) =
(1− π)(x+ s)

π(s− x)
,

which is strictly increasing in x. With falsification, this likelihood ratio is also

well-defined and satisfies (again, from the proof of Lemma S2.1)

λ(x, φ) =
λ(x)

φλ(x) + 1− φ
,

which is strictly increasing in x whenever φ < 1. The receiver’s best response is

clearly to approve whenever λ(x, φ) ≥ λ(0), which implies she uses a threshold

approval strategy. Note that for φ > 0, we have

lim
x→s

λ(x, φ) =
1

φ
,

implying the threshold is s, whenever 1
φ
≤ λ(0), that is, whenever φ ≥ ϕ0. Oth-

erwise, the threshold is equal to the unique x that solves λ(x, φ) = λ(0). A bit of

algebra then yields our formula for x̂(φ), and the remaining claims are trivial.

Proof of Proposition 4. The only part that needs additional explanations is the

calculation of the agent’s payoff. For illustration, note the receiver’s payoff is

U
(
H, φ̂(x)

)
= 1− (π+ (1−π)φ̂(x))H`(x) + (1−π)(1− φ̂(x))H`(x)− (1−π)cφ̂(x).

The rest is algebra using formulas (CDF) and (CDF), as well as the identity

µπ = πs− (1− π)s.

Proof of Proposition 5. We have already proved H∗c is continuously differentiable
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and admits a density on x > 0, which is given by (2). Differentiating (2), we get

h∗′c (x) =
h∗c(x)

(x+ s)(x− µπ)
(µπ − s− x) < 0.

Differentiating the expressions in (CDF) and (CDF), we obtain that the densities

of the belief distributions generated by the two types on x > 0 are

h∗c(x) =
x+ s

(µπ + s)
h∗c(x),

and

h∗c(x) =
s− x
s− µπ

h∗c(x).

A quick calculation yields

h∗′c (x) =
h∗c(x)

(µπ + s)

−s
(x− µπ)

< 0,

and

h∗′c (x) =
h∗c(x)

(s− µπ)

sµπ − ss− sx+ µπs

(x− µπ)(x+ s)
< 0.

To prove first-order stochastic dominance, we can use the expressions in (CDF)

and (CDF) to get

H∗c (x)−H∗c (x) =
s+ s

(µπ + s)(s− µπ)

{
(x− µπ)H∗c (x)−H∗c(x)

}
.

Convexity of H implies this expression is negative for x ≥ 0. For x < 0, we have

H∗c (x) = κ∗c , and H∗c(x) = κ∗cx therefore,

H∗c (x)−H∗c (x) = − s+ s

(µπ + s)(s− µπ)
µπκ

∗
c < 0.

Proof of Proposition 6.

Comparative statics with respect to c. Note (1) implies that for x ∈ (s, 0),

H∗c(x) > H∗0(x), as it is easy to see that ζ(x) > 1 (ζ and χ, below, are defined in

the proof of Theorem 2 in the paper, and equation references also point to this

proof). Using (1), and the functions we defined in step 1, we can write that, for

12



x > 0,

H∗c(x) =
ζ(x)

(
1 + χ(x)

)
ζ(s)

(
1 + χ(s)

) (s−µπ)+θc
(
1+χ(x)

)
ζ(x)

( (
ζ(s)− 1

)
ζ(s)

(
1 + χ(s)

) − ζ(x)− 1(
1 + χ(x)

)
ζ(x)︸ ︷︷ ︸

A(x)

)
.

To show A(x) > 0 on (0, s), we show the function ζ(x)−1(
1+χ(x)

)
ζ(x)

is increasing by

calculating its derivative:(
ζ(x)− 1(

1 + χ(x)
)
ζ(x)

)′
∝ (1 + χ(x))ζ ′(x)− χ′(x)ζ(x)

(
ζ(x)− 1

)
=

x

(x− µπ)(x+ s)

(
1 + χ(x)

)
ζ(x)− 1

x+ s

(
ζ(x)− 1

)
∝
(
µπ + xχ(x)

)
ζ(x) + (x− µπ)

=

{
µπ
s

(x+ s) + x

(
−µπ
s

) µπ
µπ+s

(
x− µπ
x+ s

) s
µπ+s

}(
x− µπ
−µπ

) µπ
µπ+s

×
(
x+ s

s

) s
µπ+s

+ (x− µπ)

= µπ

(
x− µπ
−µπ

) µπ
µπ+s

(
x+ s

s

)1+ s
µπ+s

+
x+ s

s
(x− µπ)

∝ −
(
x− µπ
−µπ

)− s
µπ+s

(
x+ s

s

)1+ s
µπ+s

+
x+ s

s

=

(
x+ s

s

){
1−

(
−µπ(x+ s)

(x− µπ)s

) s
µπ+s

}
> 0,

where the last inequality is obtained by noticing the first term is positive and the

second term is decreasing in x and therefore bounded below by its value at x = s,

which is positive because s+s
s
> s−µπ
−µπ ⇔ µπ > −s.

This finding shows that for every x ∈ (0, s),H∗c(x) is increasing in c and further-

more H∗c(x) > H∗0(x). The same holds on (−s, 0] by (1). This argument proves the

comparative statics with respect to the Blackwell informativeness ordering. The

comparative statics for the receiver’s payoff also follows.

H∗c is more informative than any other receiver-optimal test. First, if H
is another receiver-optimal test, we can linearize it to the left of 0, which makes it

13



more informative. Next, suppose that, for some x̂ ∈ (0, s), H(x̂) > H∗c(x̂). Then,

we can replicate the optimality argument of step 3 in the proof of Theorem 2 to

find a contradiction. Therefore, for all x ∈ (0, s), we have H(x) ≤ H∗c(x). Because

the two test functions must be equal to the left of 0 because they are linear and

deliver the same receiver payoff, we can conclude H is less informative than H∗c .

Proof of Proposition 7.

Pareto efficiency. Consider any test function H that delivers a fixed receiver

payoff P , so H(0) = P . To maximize the agent’s payoff while giving at least

P to the receiver, one needs to minimize H`(0) while ensuring H(0) ≥ P . By

convexity of H, this minimizing is achieved if and only if H is linear between −s
and 0. Therefore, the set of Pareto-efficient test functions is exactly the set of test

functions that are linear below 0.

Payoff bound. The full-information payoff of the receiver is πs = s+µπ
s+s

s. First,

to obtain a lower bound on the payoff ratio, note the three-signal test we obtained

in Section 4.1 yields a payoff equal to πs
(
s+s
s+2s

)
≥ 1

2
πs in the absence of cost.

Because our optimal test does better, it delivers more than one half of the full-

information payoff in the absence of falsification costs, and yet more with a positive

cost. Next, we show the bound is tight in the absence of cost. Note the payoff

ratio can be written as

µπ +H∗0(0)
s+µπ
s+s

s
=
µπ(s+ s)

(s+ µπ)s
+
κ∗0s(s+ s)

(s+ µπ)s

=
µπ(s+ s)

(s+ µπ)s
+

(s− µπ)s(s+ s)

(s+ µπ)s

(
s− µπ + (s+ µπ)

(
s−µπ
−µπ

) µπ
µπ+s

(
s+s
s

) s
µπ+s

) .
Choosing the parameters s = 1/n+ 1/n2, µπ = −1/n2 and s = 1− 1/n+ 1/n2,

and replacing, we get that this ratio is equal to

Rn =
n

n(n− 1)− 1
+

(n− 1)(n+ 1)

n2(1− 1/n− 1/n2)
(

1− 1/n+
(

n2

n2−1

)1/n ( n2

(n+1)n

)) ,
which converges to 1/2 as n→∞.

Proof of Proposition 8. First, H∗c is immune against any deviation such that φ +
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φ ≤ 1. To prove that we show that deviating to a falsification strategy (φ, φ) such

that φ + φ ≤ 1 is dominated by the strategy (φ, 0). It leads the receiver to use

a threshold x̂ ≥ x̂
(
φ
)

because the probability that a signal in the continuum is

generated by the compliant state is lower than under (φ, 0), whereas the probability

that it is generated by the noncompliant state is the same. Furthermore, lowering

the probability that the compliant state generates a passing signal is also harmful

in itself. Because (φ, 0) is, by construction, not profitable, the same is true for

(φ, φ).

Next, any deviation such that φ+φ > 1 devalues the mean associated with all

signals in the continuum of passing signals below 0, so they all lead to rejection,

whereas the mean associated with the unique signal rejected in the original test is

proportional to φπs− (1− φ)(1− π)s. The mean is therefore nonnegative if and

only if 1 − φ ≤ ϕ0φ, making any falsification strategy that does not satisfy this

inequality dominated. For falsification strategies that satisfy this inequality, the

agent’s payoff is given by

πφ(1− c) + (1− π)
(
1− φ(1 + c)

)
.

This payoff is decreasing in φ, so the agent will always choose 1−φ = ϕ0φ, yielding

a payoff of φ
(
π(1− c) + (1− π)ϕ0(1 + c)

)
− c(1− π). This payoff can be positive

only if φ = 1, and because the agent can always grant himself a positive payoff by

not falsifying, we need only consider the deviation φ = 1 and φ = 1− ϕ0.

Then, the test H∗c remains optimal if and only if this deviation is not profitable

to the agent, that is, if and only if

1− κ∗c ≥ π(1− c) + (1− π)
(
ϕ0 − (1− ϕ0)c

)
= π

(
s+ s

s
− c
)

+
µπ
s
c.

Replacing κ∗c by its expression, and letting Λ =
(
s−µπ
−µπ

) µπ
µπ+s

(
s+s
s

) s
µπ+s

, we get the

necessary and sufficient condition

(s+ µπ)Λ− θc(Λ− 1) ≥
(
π

(
s+ s

s
− c
)

+
µπ
s
c

)(
s− µπ + (s+ µπ)Λ

)
.

A bit of algebra then yields the condition Ac+Bc ≥ 1, where

A =
s(1− π + πΛ)

(1− π)(s+ s) + Λµπ
> 0,
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and

B =
1−π
π

(s− πs)− Λπs

(1− π)(s+ s) + µπΛ
.

The positivity of A is implied by the fact that

−Λµπ
(1− π)(s+ s)

= Λ
−µπ
s− µπ

=

(
(s+ s)(−µπ)

(s− µπ)s

) s
µπ+s

< 1,

as s
µπ+s

> 1, and (s+s)(−µπ)
(s−µπ)s < 1.

S3 Complements on the binary-state model

S3.1 Optimal three-signal test

We show the three-signal test described in the paper is in fact optimal among

three-signal tests.

Proposition S3.1. The optimal three-signal test is

H∗3S(x) = κ∗3S(x+ s) +
s− µπ − κ∗3S(s+ s)

s
max{x, 0},

which coincides with the three-signal test described in the paper.

Proof. First, one of the three signals must be at 0 for the test to be falsification-

proof. Second, the same linearization argument as for the optimal test shows

another signal must be at −s. Therefore, the only unknown is the position of the

third signal x ∈ (0, s]. Using the linearization, we denote by κ the slope of the test

function H between signals −s and 0. The slope η of the test function between 0

and x must satisfy

H(x) = κs+ ηx = x− µπ

hence,

η =
x− µπ − κs

x
.

The no-falsification incentive constraint of the agent, adapted from (FPIC’), then

states

η − x

s+ x
≥ s

s+ x
κ− θcx

(x− µπ)(s+ x)
.
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Replacing η by its value, we obtain the constraint

κ ≤ 1

s

{
x(s− µπ)− µπs

2x+ s
+ θc

x2

(2x+ s)(x− µπ)

}
.

The program of the designer is to maximize H(0) = κs, hence κ, under this

constraint. It is easy to verify that the right-hand side of the constraint is increas-

ing in x. Therefore, setting x = s is optimal, and

κ∗3S =
1

s

{
s(s− µπ)− µπs

2s+ s
+ θc

s2

(2s+ s)(s− µπ)

}
.

Recalling that θ = (s−µπ)(s+µπ)
(s+s)

, that is

κ∗3S =
1

s

{
s(s− µπ)− µπs

2s+ s
+ c

(s+ µπ)s2

(2s+ s)(s+ s)

}
Note κ∗3S is the ex ante probability of generating the lowest signal, which is

(1 − π)(1 − p) under the three-signal test from the paper. A straightforward

calculation shows these probabilities are equal, so the two tests are identical.

S3.2 Overt-covert comparison

We start by deriving optimal tests under covert falsification. In the binary-state

case, with covert falsification, we can use both the falsification-proofness principle,

by Proposition S2.1, and the recommendation principle, by Lemma S1.1. Using

the recommendation principle, we denote the test by τ = (τ , τ), where τ is the

nominal passing probability of the low state −s, and τ that of the high state.

Then, the set of equilibrium-feasible approval probabilities is characterized by the

obedience constraint

τπs− τ(1− π)s ≥ max{µπ, 0} (S3.1)

and the falsification proofness constraint1

τ − τ ≤ c, (S3.2)

1It is easy to show (S3.1) implies that the second falsification-proofness constraint τ − τ ≤ c
is redundant.
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which define a convex polytope. The receiver’s payoff V (τ, δ) = τπs− τ(1− π)s,

and the agent’s payoff U(τ, δ) = πτ + (1 − π)τ are linear in (τ , τ), so the set of

equilibrium-feasible payoffs is also a convex polytope.

Suppose µπ < 0. Then, the uninformative and obedient test τNI = (0, 0) is

pessimal for both players; the fully informative and obedient test τFI = (0, 1)

yields the first best for the receiver, whereas the agent optimal obedient test

is τKG = (ϕ0, 1), where KG stands for Kamenica-Gentzkow because this infor-

mation structure is agent (aka sender) optimal. When c ≥ 1, all these tests

also satisfy (S3.2), and the set of equilibrium-feasible information structures is

co
(
{τNI , τFI , τKG}

)
, which coincides with what is feasible without falsification. At

the other extreme, when c = 0, only τNI = (0, 0) is feasible. We now turn to the

interesting range of falsification costs c ∈ (0, 1). Elementary algebra yields that

τR = (0, c) is the receiver-optimal test. Coming to the agent, the range c ∈ (0, 1)

can be divided into two regions depending on whether τKG is feasible. By con-

struction, τKG satisfies (S3.1) with equality, but it violates (S3.2) when c ≤ 1−ϕ0;

in this range, the agent-optimal test is the one that satisfies both (S3.1) and (S3.2)

with equality, τA =
(
− cπs

µπ
, −c(1−π)s

µπ

)
. When τKG satisfies (S3.2) with slack, which

happens when c > 1− ϕ0, another extremal information structure arises: the test

τP = (1− c, 1) that satisfies (S3.2) with equality but (S3.1) with slack.2 Then, the

set of equilibrium-feasible tests is:

T =



τNI if c = 0,

co
(
{τNI , τR, τA}

)
if 0 < c ≤ 1− ϕ0,

co
(
{τNI , τR, τKG, τP}

)
if 1− ϕ0 < c < 1,

co
(
{τNI , τKG, τFI}

)
if c ≥ 1.

We depict T in Figure 1 for various cost levels. The corresponding set of feasible

payoffs is depicted in Figure 2, where we compare it with the set of feasible payoffs

under observable falsification.

With two states, we can rely on falsification-proof tests, so inefficiency occurs

due to incurred costs. However, when c < 1, the receiver-optimal test is infor-

mationally inefficient due to inefficient approval of the high state. Furthermore,

2The test τP = (1− c, 1) is, in fact, the optimal test for a planner who assigns equal weights
to the receiver and the agent. In all other parameter ranges, it coincides with another extremal
information structure: it is equal to τR when µπ < −1, and, for −1 ≤ µπ < 0, it coincides with
τA in the cost range where τKG is infeasible.
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Figure 1: Covert falsification: the blue region is the set of feasible information
structures T . Parameters for the plots: −s = −2, s = 2, π = 0.3, (µπ = −0.8); c ∈
{0, 0.3, 0.7, 1}.

if c < 1 − ϕ0, no efficient (or informationally efficient) feasible test exists. If

c ≥ 1 − ϕ0, all tests on co
(
{τKG, τP}

)
are efficient. As we show next, in the

continuous-state case, the receiver-optimal test is always inefficient due both to

falsification costs incurred by the agent and to informational inefficiency for suffi-

ciently low costs.

We finish by comparing the equilibrium outcomes arising under unobservable

and observable falsification. In Figure 2, we depict feasible payoffs under overt and

covert falsification, in the binary-state case. The set of feasible payoffs under covert

falsification (in blue) is also achievable under overt falsification, because it is easy

to see the agent has no incentive to falsify any of the tests at its extreme point under

overt falsification. The test τKG, whose payoffs lie at the top vertex of the grey

payoff triangle, is falsification-proof under overt falsification, and therefore feasible.

Finally, our receiver-optimal test is also feasible. This finding implies all payoffs in

the pink area are feasible under overt falsification. Furthermore, we know no payoff

vector to the right of the receiver-optimal test payoff vector is feasible. Overall,

these observations show that making falsification observable, or equivalently giving

the agent the means to commit to his falsification strategy, enlarges the set of

feasible payoffs, and makes attaining efficiency even when upward falsification is

costless possible.
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Figure 2: The grey triangle depicts the space of feasible payoffs without falsifica-
tion. The blue dotted area depicts the set of feasible payoffs under covert falsifica-
tion. The pink area shows some of the additional payoffs that are feasible under
overt falsification.
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