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Abstract

This paper makes a first attempt at building a theory of interim Bayesian persuasion.

I work in a minimalist model where a low or high type sender seeks validation from

a receiver who is willing to validate high types exclusively. After learning her type,

the sender chooses a complete conditional information structure for the receiver from

a possibly restricted feasible set. I suggest a solution to this game that takes into account

the signaling potential of the sender’s choice.

1 Introduction

Some recent information transmission models (Kamenica and Gentzkow, 2011; Rayo and Segal,

2010) view the sender as an information structure designer. This view emphasizes a connection

between design and information transmission. It departs from traditional models of information

transmission (Crawford and Sobel, 1982; Grossman, 1981; Milgrom, 1981; Spence, 1973) since

it assumes that the sender commits to an information system before learning her type so that

her choice is by itself uninformative. By contrast, there is a small but active tradition in
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Prady and Joel Sobel for discussions and ideas related to this topic. I am especially grateful to Jeanne Hagenbach,
Navin Kartik and Frederic Koessler for specific comments on this paper.
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mechanism design (Myerson, 1983; Maskin and Tirole, 1990, 1992; Mylovanov and Troeger,

2012) that considers the possibility that a choice of mechanism by an informed principal may

be used as a signal by the participants in the mechanism. Through the study of an example,

this short paper proposes a modest first step towards building a theory of information structure

design by an informed principal.

I work in a simple framework where a sender, whose type is either high or low, seeks

validation from a receiver who wants to validate high types exclusively. The sender chooses

an information system, i.e. a conditional distribution of signals for each of her types, from a

feasible set. I allow for potential restrictions on the set of feasible information systems, which

is important to make Bayesian persuasion models more flexible. I consider perfect Bayesian

equilibria of the game in which the sender chooses an information system after learning her

type, and the receiver chooses whether to validate after observing the signal generated by the

information system. I show that there is no loss of generality in considering only pooling

equilibria by an argument partly reminiscent of the inscrutability principle of Myerson (1983).1

In general, perfect Bayesian equilibrium has little predictive power and it is unsatisfying to stop

the analysis at this point. My main result is to show that three different refinement concepts

lead to the selection of the high type optimal equilibria. The first refinement is a version of the

notion of undefeated equilibria (Mailath et al., 1993; Umbhauer, 1994) which was developed in

the context of signaling games. The second refinement is an adaptation of the notion of core

mechanism of Myerson (1983), developed for the analysis of informed principal problems, to

my framework. Finally, the third refinement builds on a discussion in Farrell (1993) to define

a refinement notion that is stronger than the related notions of neologism proofness in Farrell

(1993) and perfect sequential equilibrium in Grossman and Perry (1986). I also characterize

selection by the D1 refinement (Cho and Kreps, 1987; Banks and Sobel, 1987). I then analyze

the prediction of this method for several common restrictions on feasible information systems.

All results are proved in the appendix.

1When all information systems are feasible, Myerson’s argument that any information revealed by the strategy
of the designer can be replicated by pooling on a different information system holds. When this set is restricted,
however, the focus on pooling equilibria relies on the particular structure of the model which implies that the
low type always wants to pool with the high type.
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The idea of this paper is inspired from Perez-Richet and Prady (2012), which shares a similar

structure, and where the information system is actually chosen by the receiver in a restricted

set, but effectively controlled by the sender insofar as she can choose a complexity parameter

that determines the cost of information systems for the receiver. This complexity parameter

can then be used as a signal about the type of the receiver. A few other papers analyze the

signaling effect of a choice of information transmission technology. In Gill and Sgroi (2012), a

monopolist chooses the toughness (a one dimensional parameter) of a pass or fail test for her

product, and analyzes the signaling effect of this choice.2 As in this paper and Perez-Richet and

Prady (2012), all equilibria are pooling, and they select undefeated equilibria. In Miyamoto

(2013), the information of the sender is two-dimensional, and her choice of an information

system on the first dimension is potentially informative about the second dimension. All these

papers parameterize the set of feasible information systems along one dimension, and also make

the signaling action of the sender one-dimensional. By contrast, this paper shows how to handle

a much richer set of feasible information systems, and by the same token a much richer set of

signaling actions.

2 The Model

The Players. A sender of type t ∈ {L,H} seeks validation from a receiver. The receiver

favors validation if and only if t = H. The prior is that type H occurs with probability

p ∈ (0, 1). The gain from validation is set 1 for both types of the sender. I normalize the

payoff of the receiver to be 0 when she makes the right decision, while undue validation entails

a loss ωv > 0, and undue rejection a loss ωr > 0. If (1 − p)ωv < pωr, the receiver is (ex ante)

pro-validation and incentives are (ex ante) aligned, and if (1 − p)ωv > pωr, she is (ex ante)

pro-rejection and there is a conflict of interests.

Strategies and Information. The sender can selectively reveal information to the receiver.

She does so by choosing an information system, which consists of a pair of distribution measures

2See also Gill and Sgroi (2008).
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πL(·) and πH(·) on R.3 This choice may be constrained, so I denote by S the set of feasible

information systems. For example, in the usual persuasion framework à la Milgrom (1981), the

players either reveal their type or reveal nothing, so S can be described as a pair of information

systems (πL, πH) and (π̃L, π̃H) supported on {0, 1} with πL(0) = πH(1) = 1, and π̃L(0) = π̃H(0).4

In the Bayesian persuasion model of Kamenica and Gentzkow (2011), all information systems

are available.5 Let S̄ denote the corresponding feasible set. I say that an information system π

is fully revealing whenever πL and πH have disjoint support. When πL and πH have overlapping

but unequal supports, π is partially revealing.

I consider only pure strategies on the sender’s side but I allow the receiver to mix. For an

information system π, I let Σπ be the reunion of the supports of πL and πH . The receiver uses

a behavioral validation strategy which is a measurable function λ : Σπ → [0, 1], and I denote

by Λπ the set of such functions.

Timing. I use the interim timing in which nature first draws the type of the sender which

she observes, second the sender chooses a feasible information system which is observed by

the receiver, third a signal is generated according to the information system and observed by

the players, and finally the receiver decides whether to validate. For comparison purposes, I

sometimes refer to the ex ante timing, which is the timing under which the sender chooses an

information system before learning her type.

Equilibrium. I consider perfect Bayesian equilibria. The receiver must update her informa-

tion consistently with equilibrium strategies and with the informational content of the signal

generated by the chosen information system. Perfect Bayesian equilibrium implies that the

signal generated by the information system has a sort of preeminence off the equilibrium path

in the following sense. Suppose for example that an off path information system π′ is chosen

3This description includes any pair of distributions on a finite set as in Kamenica and Gentzkow (2011).
4Note that this model also subsumes cheap talk as I could limit S to any number of uninformative pairs of

distribution.
5In fact they constrain the support of the distributions to be finite but this is without loss of generality as

far as feasible outcomes are concerned. As they show, one could even constrain the support to be of cardinality
2.
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and that it generates a signal that could only have come from one of the two types, say t. Then,

following this signal, the receiver must believe that she is facing type t with probability 1, even

though her belief may have put probability 0 on t after observing the off path choice of π′. This

treatment is consistent with the way evidence is treated in models with hard information.

3 Analysis

3.1 General Results under the Interim Timing

For the players, the relevant properties of an equilibrium are perfectly described by the prob-

ability of justified rejection ρ and the probability of justified validation ν. Suppose that a

certain information system π is chosen by the sender, and that the receiver uses the behav-

ioral validation strategy λ ∈ Λπ. Then the outcome is summarized by ν(λ) =
∫
λ(σ)dπH

and ρ(λ) =
∫ (

1 − λ(σ))dπL. So for an information system π, the set of feasible outcomes is

Φπ =
{(
ρ(λ), ν(λ)

)
: λ ∈ Λπ

}
, which is a compact and convex set. 6

An outcome is possible under belief β of the receiver if it corresponds to a best response of the

receiver so the set of possible outcomes is 7 P(β, π) = arg max(ρ,ν)∈Φπ νβωv +ρ(1−β)ωr. Then

the set of outcomes that can be attained by the sender if her actions lead to a belief β is described

by P(β,S) =
⋃
π∈S P(β, π). Clearly, all equilibrium outcomes must lie in

⋃
β∈[0,1]P(β,S). But

in fact one can restrain attention to a smaller set.

Proposition 1. All equilibrium outcomes lie in P(p,S).

This is due to the fact that one can restrain attention to pooling equilibria. It is reminiscent

of the inscrutability principle of Myerson (1983) for informed principal problems. When all

information systems are available, the logic is exactly the same, and can be generalized to

other setups: any information revealed in a separating equilibrium can be revealed in a pooling

6It is bounded because it is a subset of [0, 1]2, it is closed because it is the image of the set of measurable
functions Λπ, which is closed under pointwise convergence, by a function which is continuous by the dominated
convergence theorem. Convexity can be proved directly without difficulty.

7This is well defined since Φπ is compact and the objective function is continuous.
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equilibrium. When S is constrained, the result is dependent on the particular incentive structure

of the game I consider, which is such that the low type always wants to imitate the high type

If perfect revelation is available, then perfect Bayesian equilibria have some predictive power.

Indeed, any pooling equilibrium must achieve validation with probability one for the high type,

for otherwise a high type sender would deviate to perfect revelation. Therefore an information

system π is an equilibrium if and only if it maximizes the utility of the high type under the

constraint that the receiver chooses an optimal validation policy given an initial belief equal

to the prior, and the choice of information system. Let H(p,S) = {(ρ, ν) ∈ P(p,S) : ν ≥

ν ′, ∀(ρ′, ν ′) ∈ P(p,S)} denote the set of high type optimal possible outcomes, which I assume

to be non empty.8

Proposition 2 (Perfect Bayesian Equilibria).

1. If a perfectly revealing information system is available, then the set of equilibrium outcomes

is exactly the set of high type optimal outcomes H(p,S), and hence ν = 1 in any such

outcome.

2. If there exists an outcome (ρ̂, ν̂) ∈ P(p,S) such that ρ̂ = 1, and for every ν ′ > ν̂, (1, ν ′) /∈

P(p,S), then the set of equilibrium outcomes is the set of outcomes (ρ, ν) ∈ P(p,S) such

that ν ≥ ν̂.

3. Otherwise, all outcomes in P(p,S) can be supported as an equilibrium.

Hence, the predictive power of perfect Bayesian equilibrium is weak when perfect revelation

is not available. But any feasible information system, and therefore any outcome in P(p,S), can

be supported as a pooling equilibrium when no information system allows the high type to be

proved with positive probability. To support any information system π, it is then sufficient to let

the receiver attribute any alternative choice π′ to the low type.9 This lack of predictivepower is

unsatisfying. Furthermore, some of these equilibria seem unreasonable. In this case, equilibrium

8This set may be empty if, for example, P(p,S) is an open set of [0, 1]2. It is closed when S = S̄, and
otherwise it is always possible to ensure that it is closed by making reasonable restrictions on S.

9The intuitive criterion, formalized by Cho and Kreps (1987), does not refine prediction since all information
systems perform equally from the point of view of the sender when the receiver forms the belief that she faces
the high type with probability one.
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refinements seem indispensable. My main result is to show that three different but related belief

based refinements lead to the selection of the high type optimal outcomes H(p,S). All of these

refinements, in spite of their unavoidable limitations, capture the following logic, which seems

convincing for this game. First, a successful deviation from an equilibrium path should be

attributed to {H} or {L,H}. Second, if a deviation is attributed to {H}, then both types will

want to use it, which brings the receiver back to {L,H}. Third, at this stage there are three

possibilities: (i) if attributing the deviation to {L,H} makes it profitable for both L and H,

then {L,H} is a self-signaling set; (ii) if attributing the deviation to {L,H} is only profitable to

{L}, then the receiver should put more weight on L but that makes the deviation unattractive

to any type of the sender; (iii) if attributing the deviation to {L,H} is only profitable to {H},

then the receiver could reasonably believe anything between p and 1, but all these beliefs would

make the deviation attractive to either the high type or both types.

Next, I describe these refinements. To gain space, I define them more formally and prove

the result in the appendix. The first of these refinements, R1, is a variant on the notion of

undefeated equilibrium (Mailath et al., 1993; Umbhauer, 1994). The concept of undefeated

equilibrium relies on the idea that a deviation of the sender from her equilibrium action π to an

information system π′ should be interpreted as an attempt to indicate that she would prefer to

play the equilibrium outcome associated to π′ in P(p,S). The beliefs of the receiver associated

to such a deviation should therefore anticipate the fact that the sender is of a type that benefits

from the new equilibrium. If they do not, the original equilibrium is said to be defeated by

the new one.10 The second notion, R2, is an adaptation of the notion of core mechanisms of

Myerson (1983) to my framework so as to take into account the fact that the designer chooses

an information system rather than a full mechanism.The third notion, R3 refines the notions

of neologism proofness of Farrell (1993) and of perfect sequential equilibrium of Grossman and

Perry (1986).11 For exposition purposes, suppose as in Farrell (1993) that a deviating player

10Contrary to the original definitions, I do not assume that all types using π′ in the new equilibrium must
prefer either the new equilibrium (Mailath et al., 1993), or some best response of the receiver to the belief
generated by π′ in the new equilibrium, to the original equilibrium (Umbhauer, 1994).

11It is easy to show that in this example all the perfect Bayesian equilibria are selected by the notions of
Farrell (1993) and Grossman and Perry (1986).
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is allowed to make a suggestion to the receiver as to how her deviation should be interpreted.

The idea is to use the suggestion to start a chain of subsets of types that could be making the

deviation by asking which types benefits if the receiver best-responds to the suggestion (a set

S1), and then which types benefit if the receiver best-responds to the belief generated by S1

etc.

Proposition 3. All three refinements select exactly the equilibrium outcomes in H(p,S).

In the next section I analyze the consequences of selecting the high type optimal outcomes

under several common restrictions on the set of available information systems. Before doing

that, I remark that the D1 criterion12 of Cho and Kreps (1987) may in some cases lead to a

different selection. In fact, D1 and the NWBR criterion of Kohlberg and Mertens (1986) make

the same selection, which is characterized as follows.

Proposition 4. An outcome (ρ, ν) ∈ P(p,S) is selected by D1 or NWBR if and only if either

of the following holds:

(i) ν = 1.

(ii) ρ = 1 and for every ν ′ such that (1, ν ′) ∈ P(p,S), ν ′ ≤ ν.

(iii) For every (ρ′, ν ′) ∈ P(p,S), ρ′ ≤ ρ or ν ′ ≤ ν.

Instead of a complete proof, I provide an example of how D1 operates in the online appendix,

together with a graphic intuition. Applying this intuition repeatedly leads to the result of the

proposition.

4 Applications

First, I consider the case where all information systems are available. It is represented in panels

(a) and (b) of Figure 1 for, respectively, the pro rejection and pro validation cases. The set

P(p, S̄) is the set of policies that lie above the blue dotted line, whose equation is given by

12See also Banks and Sobel (1987) and Cho and Sobel (1990).
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Figure 1: Applications – (a) all information systems available; pro rejection receiver (b) all
information systems available; pro validation receiver (c) information systems: one of the nor-
mal families; pro rejection receiver (d) information systems: one of the normal families; pro
validation receiver.

νpωr + ρ(1 − p)ωv = χ, where the left hand-side is the objective that the receiver tries to

maximize, and the right hand-side is the value of this objective function if she always rejects for

the pro-rejection case and if she always validates for the pro-validation case. By Proposition 2,

the set of equilibrium outcomes is exactly the set of policies such that the high type is validated

with probability 1, which is represented by the green dashed line in both panels. To the left

of this line, KG denotes the ex ante (Kamenica-Gentzkow) solution. To the right, Rev is

the receiver-optimal policy, which can only be attained under full revelation. By refining the

solution concept even more, it may be possible to select either of these outcomes in the interim

case. If one requires the selected outcome to be Pareto optimal across types, for example,

then the ex ante outcome is the unique selection. To select the full revelation outcome, one can

modify the preferences of the sender as follows. Suppose that the sender cares lexicographically:

first, about the probability of validation; second about the belief of the receiver. The prediction
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under the ex ante timing remains the same as before. Under the interim timing, however, the

unique high type optimal outcome now corresponds to full revelation.

Second, I consider information systems such that πH is a normal distribution with mean

` > 0 and variance V , while πL is a normal distribution with mean −` and variance V . Then,

there are two natural ways of generating a family of feasible information systems: first, by

considering variances from V = 0 to ∞, and adding a completely uninformative information

system; second by letting ` go from 0 to ∞, and adding a perfectly revealing information

system. In the discussion that follows, both families are denoted by SN as they have the same

qualitative properties. Panels (c) and (d) in Figure 1 illustrate the properties of these families

for, respectively, the pro rejection and the pro validation cases. The red curve represents the set

P(p,SN ) of feasible outcomes, and H(p,SN ) corresponds to the green dots. In the pro rejection

case, full revelation is the unique equilibrium outcome, whereas in the pro validation case,

both the full revelation outcome and the completely uninformative outcome leading to certain

validation are possible. Under the ex ante timing, the unique prediction would lie somewhere

on the upper half of the red curve for the pro rejection case, and at the uninformative outcome

for the pro validation case.

In the pro-validation case, it is interesting to constrain the precision of available information

systems (taken to be ` or the inverse V ) to a limited range. Then, the set P(p,S) corresponds

to a connected portion of the U-shaped curve in panel (d). Hence the high type optimal

outcome lies at either extreme point of the curve depending on the range of precisions. This

means that a small technical change leading to the availability of slightly more precise tests,

or a strengthening of regulation imposing a higher minimal precision, could lead to a dramatic

change of outcome from the least informative test to the most informative test.
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Appendix

A Three Refinements and a Proof

In this section I define the refinements for general sender-receiver games. The type set is denoted

by T , p(·) denotes the prior belief, and for any set S ⊆ T , p(·|S) denotes the restriction of the

prior to S. Then I prove Proposition 3.

R1. The idea of this family of refinements is that an out-of-equilibrium action should be

interpreted as an attempt by a player to signal that she would prefer to coordinate on another

equilibrium in which this action is played. If the beliefs of the players in the original equilibrium

do not anticipate this, the original equilibrium should be discarded. This idea was developed

independently in Mailath et al. (1993) and Umbhauer (1994) with small differences. Formally,

in a sender-receiver game with general action set for the sender, if T is the type set of the

sender and e is the original equilibrium, consider an equilibrium e′ and an action of the sender

a′ which is on the equilibrium path of e′ but off the equilibrium path of e′. Then let T+ ⊆ T

be the set of types that strictly prefer e′ to e and use action a′ in e′, and T 0 ⊆ T be the set

of types who are indifferent between e and e′ and use a′ in e′. Then the belief of the receiver

that follows the use of a′ in the initial equilibrium e should be in the convex hull of p(.|T+) and

p(.|T+ ∪ T 0). This means that the receiver should believe that all types in T+ send a′ while

types in T 0 may send a′ with positive probability. If this does not hold, then e is defeated by e′.

The refinement retains only undefeated equilibria. Unlike Mailath et al. (1993) or Umbhauer

(1994), I do not require all types who use a′ in e′ to prefer e′ to e, or even some best response

of the receiver to her belief in following a′ in e′.

This refinement raises an issue absent under the original definitions. In the model of this

paper, a deviation to an information system used in a pooling equilibrium that only the high

type prefers is attributed to the high type. The problem is that such an attribution would make

the low type want to use this deviation as well. It does not seem to be particularly problematic

in this game because, if the receiver were to attribute this deviation to both types equally, then
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the high type (and only the high type) would still find the deviation profitable. But the logic

of this attribution may seem unsatisfying (note however that this problems is absent in any

equilibrium satisfying the refinement). The next two refinements tackle this issue.

R2. This refinement is inspired from Myerson (1983). The difference is that the sender an-

nounces an information structure instead of a mechanism. When the sender announces a mech-

anism, his announcement includes the suggestion of a course of action for the receiver, and it

is natural to restrict potentially destabilizing mechanisms to be incentive compatible given the

beliefs they may generate. When the sender merely announces an information structure, the

receiver should best respond given her beliefs, but that does not entail any natural restriction

on the announcements of the sender. In order to define core outcomes, I consider a sender-

receiver game, with general finite type set T for the sender, and where the sender announces an

information system π (defined for the general type set T ). Then an information system π is a

core information system if it is an equilibrium and there is no other information system π′ 6= π

and set S ⊆ T , such that for every belief p(·|S ′) of the receiver, where S ⊆ S ′ ⊆ T , any type

t ∈ S strictly prefers the outcome obtained when the receiver best responds to π′ to the initial

equilibrium outcome. The motivation is as follows. Suppose that π is not a core information

system. Then there exists a subset of types S that would benefit from any beliefs that restricts

the prior to any superset of S. Then any type in S could credibly announce π′, and tell the

receiver “my type is in S.” The receiver does not have to believe that the sender is indeed in

S, but she should account for the fact that all types in S are strictly better off as long as she

believes that they make this statement.

This refinement tackles the logical difficulty with R1 since a deviation must be profitable

to those who initiate it if it is correctly attributed to them, but also if it is attributed to any

larger set of types, thus anticipating the fact that some types may try to pool on the deviation.

R3. As in the former paragraph. I describe the refinement for a sender-receiver game with

general type set T , and where the sender announces an information system π. As in Farrell

(1993), I assume that statements of the kind “my type is in S” are available for every S ⊆ T .
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Consider an equilibrium e and an information system π′ which is never played in e. When

deviating to π′, the sender can also announce that her type belongs to some set S0 ⊆ T .

Then let S1 be the set of types that strictly benefit from the best response of the receiver to

π′ under the belief p(·|S0) relative to the initial equilibrium, and so on, so that Sk+1 is the

set of types that strictly benefit from the best response of the receiver to π′ under the belief

p(·|Sk) relative to the initial equilibrium. The sequence stops if the empty set is ever reached.

The types in
⋃
k Sk are those who could be tempted to use the deviation π′ together with the

announcement “my type is in S0.” Therefore the initial equilibrium is deemed unreasonable if

it can only be supported by a belief q ∈ ∆(T ) that does not lie in the convex hull of the set{
p(·|S1), p(·|S2), p(·|S3), · · ·

}
. If the sequence is empty (S1 = ∅), then all beliefs are allowed.

Note the difference with Farrell (1993), which would require the existence of a set S0 such that

S1 = S0 (in Farrell (1993), the deviation is the announcement itself, whereas here it consists in

a choice of a different information system accompanied with the announcement).

This refinement tackles the logical difficulty with R1 since a deviation must be profitable to

those who initiate it if it is correctly attributed to them, but also if it is attributed to a larger

set of types that may pool on the deviation. The difference with R2 is that R3 is more selective

about assessing the types that would pool on the deviation.

Proof of Proposition 3. First consider R1. Let (π,Σ) be an information system such that

the associated equilibrium outcome in P(p,S) is not in H(p,S) (so full revelation must not be

available).Then consider any information system π′ 6= π such that the associated equilibrium

outcome is in H(p,S). Then the high type must prefer the new outcome to the original.

Suppose first that the low type prefers the original equilibrium outcome. Then after observing

the deviation π′, the receiver who, according to R1, is assumed to interpret it as an attempt to

coordinate on the new equilibrium must believe that this message comes from the high type.

If she did, however, the original equilibrium would not be an equilibrium as both types would

benefit by deviating to π′. Suppose now that the low type is weakly prefers the new equilibrium.

Then after observing the deviation π′, the receiver must believe that she faces the high type
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with probability p′ ≥ p. However the original equilibrium cannot be supported by such a belief,

since by deviating to π′ the high type would get both a more favorable belief p′ and a more

favorable information system. This shows that all selected equilibrium outcomes lie in H(p,S).

To show that the two sets are in fact equal, consider an information system π that leads to

an equilibrium outcome in H(p,S). Since the high type cannot improve her situation, the

refinement does not prevent from believing that any deviation is originated by the low type,

and such beliefs clearly support the equilibrium.

Now consider R2. Let π be an information system such that the associated equilibrium

outcome in P(p,S) is not inH(p,S). Consider another information system π′ with an associated

equilibrium outcome in H(p,S). Then let S = {H}. Clearly the high type prefers the outcome

associated to the information system π′ and the belief p(·|S) since the latter must put probability

one on the high type. Now consider S ′ = {H,L}. Then p(·|S ′) is simply the prior, and since π′

is in H(p,S), the best response to π′ when the belief is the prior leads to a better outcome than

the equilibrium associated with π. Therefore the initial equilibrium is not a core equilibrium.

This proves that all core equilibrium outcomes lie in H(p,S). Now consider an information

system π such that the associated equilibrium outcome lies in H(p,S). It can be supported by

the belief that any other choice is due to the low type. Suppose that this equilibrium is not

a core equilibrium. Then the high type would have to strictly prefer the outcome associated

with a different information system π′ under the belief p(.|T ), which is simply the prior. But

then that would contradict the fact that π together with the prior leads to a high type optimal

outcome.

Now consider R3. Let π be an information system such that the associated equilibrium

outcome in P(p,S) is not in H(p,S). Consider another information system π′ with an asso-

ciated equilibrium outcome in H(p,S). Suppose that the receiver deviates from the original

equilibrium by choosing π′ and at the same time suggests to the receiver that she is the high

type, so S0 = {H}. The receiver must realize that both types would benefit if she were to

believe the suggestion, so S1 = {H,L}, and the corresponding belief is exactly the prior. If

that is indeed the receiver’s belief, she will reproduce the outcome associated with π′. This
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outcome makes the high type strictly better of. There are two cases. First, if it is does not

make the low type strictly better of, then S2 = {H}, and the sequence generated is therefore

Sk = {H} for every even k, and Sk = {L,H} for every odd k. Second, if both types are better

of under the outcome obtained when the receiver best responds to π′ with a belief equal to the

prior. Then S2 = S1 = {L,H}, and that pins down the sequence Sk = {L,H} for every k ≥ 1.

In both cases, the possible beliefs that support the initial equilibrium following a deviation to

π′ must lie in [p, 1], but that clearly makes this deviation profitable for the high type, so the

initial equilibrium cannot satisfy the refinement. Note that we could have used the suggestion

S0 = {L,H} to get the same result. This proves that all equilibrium outcomes that satisfy

R3 lie in H(p,S). Now consider an information system π such that the associated equilibrium

outcome lies in H(p,S). Consider any deviation π′. If the suggestion of the receiver is {L}, then

S1 = ∅ and the belief that puts all the weight on the low type is allowed following this deviation

and it supports the original equilibrium. If the suggestion is {L,H}, then the associated belief

is the prior, but since the original equilibrium is high type optimal, the set S1 is either {L} or

the empty set. If S1 = L, then S2 = ∅. In both cases, the belief that puts all the weight on

the low type is allowed and supports the original equilibrium. Finally, suppose the suggestion

of the receiver is S0 = {H}. Then S1 = {L,H}, and S2 is either {L} or the empty set. So the

prior is a possible belief in both cases, and it supports the original equilibrium.

B Remaining Proofs

Proof of Proposition 1. Suppose that there exists a fully separating equilibrium in which

the low type plays π and the high type plays π′ 6= π. Then the high type is validated with

probability 1 and the low type with probability 0. If the low type deviates to π′, she is validated

with probability 1 unless π′ is fully revealing. So for this to be a separating equilibrium, π′

must be fully revealing. But then the same outcome is obtained in a pooling equilibrium in

which both types choose π′, which can be supported by believing that any deviation can only

be initiated by the low type.
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Proof of Proposition 2. If perfect revelation is available, the high type can ensure validation

with probability 1 by deviating to full revelation, hence any equilibrium must satisfy ν = 1.

Any outcome in P(p,S) such that ν = 1 can clearly be supported as an equilibrium which

concludes the proof of 1.

Let (1, ν̂) be as in the proposition. If ν̂ = 1, full revelation must be available and we are

back to 1, so suppose ν̂ < 1. I look for information systems that can generate the outcome

(1, ν̂). The only way for the low type to be rejected with probability 1 while the high type

is validated with positive probability is if the information system partially separates the two

types: there must exist some signal realizations that only the high type can send, and following

which the receiver validates, and some signal realizations that can be sent by both types or

only the low type and following which the receiver rejects with probability 1. Furthermore, the

probability that a signal that can be generated only by the high type occurs must be exactly

ν̂. Hence there must exist an information system that proves the high type with probability

ν̂. But then the high type can always ensure a validation probability of ν̂ by deviating to this

information system, so any perfect Bayesian equilibrium must give her a validation probability

of at least ν̂. Now it must also be the case that no deviation can give the high type a validation

probability ν > ν̂ for that would mean that (1, ν) ∈ P(p,S), a contradiction. Clearly, then,

every outcome in (ρ), ν) ∈ P(p,S) can be supported as a pooling equilibrium.

To prove the last point, note by 1. and 2. that there cannot exist any information system

such that the high type can prove her type with positive probability. Therefore any outcome

in P(p,S) can be supported as an equilibrium if the receiver believes that any deviation comes

from the low type exclusively.

C D1: An Example

In this example the sender only has two information systems π1 and π2 available, and the sets

of possible outcomes generated by these information systems under all beliefs, ∪β∈[0,1]P(β, π1)

and ∪β∈[0,1]P(β, π2), are represented respectively by the lower and the upper curve on Figure 2.
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Figure 2: Example – The high type optimal equilibrium is e1, but the only equilibrium that
satisfies D1 is e2. (a) shows why e1 cannot satisfy D1, while (b) shows why e2 satisfies D1.

The receiver is pro validation, and her indifference sets over outcomes are represented by the

dashed red lines. So the two possible equilibria are e1 and e2. Consider e1 and a deviation

in which the sender announces π2 instead of π1. The best responses of the receiver that are

preferred by the high type given this deviation correspond to the outcomes that lie on the

portion of the higher curve that is above the horizontal blue line that goes through e1 in panel

(a), while those that are preferred by the low type are the ones that lie on the portion of the

higher curve that is to the left of the vertical blue line. Clearly, according to D1, the receiver

should attribute the deviation to the high type, but e1 cannot be supported if that is the case.

Now consider e2 and a deviation in which the sender announces π1. The best responses of the

receiver that are preferred by the high type given this deviation are the ones that lie on the

portion of the lower curve that is above the horizontal blue line in panel (b), while those that

are preferred by the low type are the ones that lie on the portion of the lower curve that is to

the left of the vertical blue line. According to D1, the receiver should attribute the deviation to

the low type, and since this belief is compatible e2, this equilibrium passed the test. However

it is easy to see that e1 is the unique high type optimal equilibrium.
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